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EXECUTIVE SUMMARY

As stated in the theme for the meeting: “Recent experiments have demonstrated the persistence of coherent
structures in turbulent shear flows and consequently have cast doubt on the usual local transport relations and even on
the usefulness of Reynolds averaging, used in practically all modelling approaches.

It is the purpose of the symposium to take stock of the present situation in turbulence research and to attempt,
by bringing together experimentalists and theoreticians, to map out new directions in modelling and experimentation.
In order to concentrate on one of the most important applied problems, the symposium deals specifically with turbulent
boundary layers, in both incompressible and compressible fluid flow.”

The existence of coherent vortex structures has led to renewed interest in Lagrangean descriptions of the flow.
Current work thus emphasizes flow-visualization methods together with development of sophisticated conditional
sampling methods in hot-wire anemometry. Both the need for such methods and their usefulness are amply demonstrated
in the research presented at the symposium. Experimentalists have taken up the challenge presented by the existence
of coherent structures, and new results are reported from several laboratories.

Theoreticians interested in these new results face the very difficult task of coming to grips with nonlinear vortex
interactions, a subject which has been somewhat neglected in recent times. Development of a physically satisfactory
and mathematically tractable theory is a formidable task and progress is very slow. The decomposition of a fluctuating
flow field into waves is a traditional and thus familiar approach while decomposition into horseshoe vortices (say)
presents conceptual as well as mathematical difficulties.

Computer modelling of turbulent shear flows using Reynolds averaged equations with various closure schemes is
the most useful technique presently available. However, sooner or later, modelling will have to recognize the experimental
fact of coherent structures. In both theory and modelling, two-level approaches dealing with definite vortex structures
on one level and some form of random small-scale turbulence on another level are being studied, and significant progress
is reported at the meeting.

Finally, considerable attention is paid in several papers to the early development of turbulence, during or immediately
following transition. These papers go some way toward establishing that wave packets and turbulent spots can be viewed
as models and perhaps as prototypes for coherent structures in fully developed flow.

All in all the symposium served its purpose. Probably the most significant result is cross-fertilization of ideas

among the three groups of rescarchers. The communication of significant research results, however, is also evident in
the papers which follow,

H.W.LIEPMANN
Chairman, Program Committee
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EXPERIMENTAL METHODS AND TECHNIQUES IN TURBULENT BOUNDARY LAYER RESEARCH

by

Geneviéve COMTE-BELLOT

Ecole Centrale de Lyon

Laboratoire de Mé&canique des Fluides
36, route de Dardilly - 69130 ECULLY
France

1. Introduction.

The arsenal of methods and techniques available to investigate turbulent

boundary layers is impressive and this is due to at least three reasons :

(i) the scientific motivations are manifold. For example, for the basic case of an
incompressible unheated two-dimensional turbulent boundary layer on plane walls
without a pressure gradient, the interest lies at present in the detailed knowledge
of all the physical mechanisms involved. Sophisticated multipoint and multicomponent
measurements are therefore developed. On the other hand, for boundary layers observed
in real situations, i.e. with additional effects due to pressure gradients, rotation,
gravity forces, suction or blowing... the goals are less ambitious, but techniques
which overcome the inherent difficulties due to the situation encountered in pratice
are needed. For example, investigation of regions of reverse flow is a matter of
concern for the aerodynamics of airfoils'. When rotation or buoyancy effects are
present the achievement of the kinetic energy balance is a legitimate objective. The
data helping to develop the numerical modeling of the flow are also a strong moti-
vation in these practical situations.

(ii)the transducers can be placed not only inside the flow(or. even far from the flow),
as for any turbulent flow, but also at the wall. Special transducers have therefore
been developed for the measurement of wall pressure fluctuations and velocity gradients
at the wall. These wall variables are, of course, relevant to other problems, such
as the noise emitted by solid-flow interactions, or the vibratory response of struc-
tures excited by turbulent boundary layers.

(1iii) the signal processing technique has gained a great deal of refinement since the
1960's due to the development of compact electronic devices and computers. There is
also the need to understand complex unsteady flows through a limited number of probe
signals. For example, conditional zone averages are used to take into account the
random and convoluted edge of the boundary layer. Pattern recognition techniques help
the detection of particular structures making up the turbulent flow.

This lecture is intended to be a survey of the three points which have been
listed. The most recent facts will be emphasized as much as possible, and compared with
routine techniques such as conventional averages, spectra, or space and time correlations.
Because of the limited time available, the survey is, however, limited to incompressible
boundary layers. Even in this case, many references could be given and I apologize in
advance for any omissions.

2. Actual objectives of boundary layer research

As mentioned in the introduction, the state of motivation is different for
the basic case of the boundary layers without a pressure gradient and for the more complex
usual boundary layers, so that the objectives have to be listed separately. For the former,
a brief historical evolution of the objectives is helpful for the understanding of the
present situation, although a highly documented review by WILLMARTH 1975 a is available.
For the latter, the additional relevant factors have to be pointed out at once.

As soon as a statistical approach of turbulence became available, after the
ploneering work of G.I. TAYLOR for isotropic turbulence, experimental investigations were
aimed at the measurement of as many statistical characteristics as vpossible : r.m.s.values
of velocity fluctuations, energy-spectra, space correlation functions...(TAYLOR 1936 ;
KLEBANOFF & DIEHL 1952 ; LAUFER 1951 (the fully developed channel or pipe flows are also
referred to because of their similarity to boundary layers in the wall region)).

Interest in the balance of the turbulent kinetic energy came in the early
fifties (KLEBANOFF 1955, LAUFER 1954), along with the idea of preferred turbulent large
structures to convey energy from the mean flow to turbulence (TOWNSEND 1956) . The local
isotropy expected for fine structures was checked and usually obtained except very close
to the wall because of the large mean velocity gradients. The non-Gaussian features of
the velocity and its time derivative were also examined in detail (COMTE-BELLOT, 1965).

The idea of considering turbulence as a material with some sort of constitutive
law came later (LUMLEY 1970) and assumed different forms. At first, the memory of turbu-
lence was obtained through space-time correlations (FAVRE, GAVIGLIO & DUMAS 1957; SABOT
& COMTE-BELLOT 1972, BLACKWELDER & KOVASZNAY 1972 ; SABOT, RENAULT & COMTE-BELLOT 1973).
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Integral time scales in the convected frame of reference are, taking the example of the
wall region, of the order of L./« with w rms of the velocity component w;

and L(R; the longitudinal integral length scale of u, . A second aspect is the res-
ponse of the boundary layer to imposed perturbations : introduction of sinusoidal pertur-
bations by HUSSAIN & REYNOLDS 1972 ; introduction of a turbulent spot into a fully
developed turbulent boundary layer (HARITONIDIS, KAPLAN & WYGNANSKI 1978 ; WYGNANSKI 1979).

Other perturbations of interest are the sudden change in the wall condition,
for example from smooth to rough walls (ANTONIA & LUXTON 1971) or the sudden application
of a rotation to create 3-D effects (BISSONNETTE & MELLOR 1974 ; LOHMANN 1973 ; ARZOUMANIAN,
FULACHIER & DUMAS 1979).

The need to separate the experimental data issued from the turbulent and non-
turbulent zones was pointed out by KAPLAN & LAUFER 1969 and by KOVASZNAY, KIBENS &
BLACKWELDER 1970, although the existence of a time-varying but sharp interface had been
known for a long time in free turbulent flows (CORRSIN & KISTLER 1955). Since then
conditional zone averaging have been widely used.

The way entrainment takes place at the boundary layer edge quickly became a
main objective for experimental research. The mean entrainment rate is also an important
boundary condition for the numerical modelling of turbulent boundary layers (HEAD &
PATEL 1970 ; MARI, JEANDEL & MATHIEU 1976).

From space—-time correlations, KOVASZNAY, KIBENS & BLACKWELDER (1970) obtained
the. image and motion of the large bulges limiting the boundary layer edge (upward motion
and rotation). Shortly afterwards, measurements of the Reynolds stress at various distances
from the front or the back of the bulges (conditional point averages)were made by ANTONIA
who concluded that most of the entrainment takes place at the front (downstream part) of
the bulges where the Reynolds %tress is small and matches the external value.

The search for identifiable structures inside the boundary layer may be important
for the downstream growth of the layer (Fig. 1). The problem is, per se, difficult because
it requires looking for some kind of hidden structures in respect to the conspicuous large
bulges modelling the free edge. However, many elegant methods have been devised :

(1) visual observations (KLINE, REYNOLDS, SCHRAUB & RUNSTADLER 1967 ; CORINO & BRODKEY 1969:
KIM, XKLINE & REYNOLDS 1971, GRASS 1971, FALCO 1977), (ii) the four quadrant analysis of the
w, v fluctuations (WILLMARTH & LU 1972, WALLACE, ECKELMANN & BRODKEY 1972, LU & .
WILLMARTH 1973, SABOT & COMTE-BELLOT 1976), (1ii) analysis of cross—correlations between
velocity gradients at the wall and velocities across the boundary layer (BROWN & THOMAS
1977), (iv) analysis of the activity periods of filtered velocity signals (RAO, NARASIMHA &
BADRI NARAYANAN 1971), (v) detection of characteristic patterns or "signatures" in the
velocity signals (WALLACE, BRODKEY & ECKELMANN 1977 ; COMTE-BELLNT, SABOT & SALEH 1979) .

Close to the wall (céu;,/u £ 40) typical structures have been clearly obser- {
ved : low-speed streamwise streaks, pairs of contra-rotating vortices aligned in the
streamwise direction, occasional lift-up_ of the streaks with a breaking up into a chaotic
small scale motion ("bursting" sequence ). For a recent account of the numerous investi-
gations, one can refer to the paper which will be given later in this meeting by BLACKWELDER.
The essential result is that the mean frequency of occurrence of the bursts scales with
the outer flow variables, § and Ue , and not with the inner variables, b/u# and u¢
(KIM, KLINE & REYNOLDS 1971 ; RAO, NARASIMHA & BADRI NARAYANAN 1971 ; LAUFER & BADRI
NARAYANAN 1971) .

Farther from the wall, several features have been reported : (i) existence of
organized large scale structures inclined to a preferred angle in respect to the mean flow
(FALCO 1977 ; BROWN & THOMAS 1977), (ii) correlation between these structures and the
behaviour of the viscous sub-layer (BROWN & THOMAS 1977), (iii) intermittency of very large

amplitude of -~ puwwv (t) associated with "ejections”" (v%0,w <0 ) whose longitudinal
dimension is small relative to_ that of the %arge structures (of the order of L_;) and
L H respectively, with L y ~ 0.1 L ?, (SABOT 1976), a result which néfas for

rough walls (GRASS 1971 ; SABOT, SALEH & COMTE-BELLOT 1977), (iv) existence of "typical
eddies" (average streamwise length approximately 200'9/1b$, ) formed on the upstream side
of large scale motions (average length 1.6 § ) and associated with significant Reynolds
stress contributions (FALCO 1977 ; cf. Fig. 1).

A plausible dynamic model for these structures is still missing. The difficulty
is to find the origin and development of the large structures and the link with the wall
events. However, interesting suggestions have been proposed using perturbation and insta-
bility concepts (COLES & BARKER 1975 ; BROWN & THOMAS 1977 ; MOLLO-CHRISTENSEN 1971 ;
LANDHAL 1977) pairing processes (OFFEN & KLINE 1973) and vortex models (THEODORSEN 1954 ;
KLINE, REYNOLDS, SCHRAUB & RUNSTALDER 1967 ; WILLMARTH & BOGAR 1977). The vorticity dynamic
and its relation with the velocity field (stretching, tilting) is probably of great
importance. In particular, it has been known for a long time, that the skewness factor
of the time derivative of the velocity fluctuations is very large in the wall region,

S, = 0.80 at ywl /o = 15, and small near the free edge S, = 0.20 at §/¥ =1
(COMTE-BELLOT 1959, 1965 ; conventional averages). Some of these measurements have been
recently repeated by WALLACE, BRODKEY & ECKELMANN 1977 and used in a pattern recognition
technique (cf. section 4.2). 1In this context, multipoint vorticity measurements would
probably be useful, but are very difficult to perform(cf. section 3.1.1.). The difference

% The term "burst" was introduced by CORRSIN as early as 1957 when investigating with
RUETENIK the turbulent flow in a 2 D divergent channel, and was related to large w>0
signals which occur intermittently close to the wall.
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in the order of magnitude between the integral length scales related to the longitudinal
velocity component and the transverse component ( L.'zl ~ 0.1 L. '44 SABOT 1976)

is also an important experimental fact which shows that the spatial coherence is given
by different steps in the sequence mechanism which governs the boundary layer growth.

Finally, the detailed knowledge of wall-pressure fluctuations from the turbu-
lent velocity field is a matter of concern. Of course, they are theoretically known since
governed by a Poisson equation, but the relative importance of the different flow regions
has to be analyzed, after the first speculation of STERNBERG (1962). In most aoplications
(aerodynamic noise, GOLDSTEIN 1976 ; panel vibration, MAESTRELLO 1965 ; cavitation at or
near walls for material damages, ARNDT & GEORGES 1979) it is the instantaneous space-
time field which is of interest rather than the overall statistical features. Numerical
modelling has also been attempted for both (DEARDORFF 1970 ; SCHUMANN 1975 ; GROTZBACH
& SCHUMANN 1979, SCHUMANN, GROTZBACH & KLEISER 1979), and all comparisons with experiments
are desirable. New developments with more grid points in the wall region, will be presented
in the course of this meeting by KIM & MOIN,

Numerous cases of complex turbulent boundary layers, i.e. with extra strain
rates, are encountered in technical problems and we shall examine some of the most pertinent
situations.

This is a basic case for flows around airfoils in turbomachinery and aeronautics
and it has been a subject of research since the pioneering work of SCHUBAUER & KLEBANOFF
1951. The eventual separation of the boundary layer is the main problem to investigate
with the urgent need to know (i) the mean velocity profile, (ii) the entrainment rate,

(iii) the fraction of time during which the flow moves upstream (a sort of internal intermit-
tency), (iv) the importance of the additional normal stress terms relative to the usual

shear stress term in the equation governing the momentum and the turbulent kinetic energy
(cf. Fig. 2) and (V) the possible 3D effects. Up-to-date analyses are given by SIMSON,
STRICKLAND & BARR 1977 and by MELINAND & CHARNAY 1979. In the former, a preliminary
investigation of the bursting frequency is also reported, but this problem seems far beyond
the reach and understanding of such a complex flow, at least in the present state of the

art regarding boundary layers without a pressure gradient.

The incentive for studying rotating boundary layers comes mainly from their
occurrence in turbomachines (e.g. on blades of centrifugal compressors) and their imoli-
cation in secondary losses.

Since the general situation is complex, a basic model has been considered
(JOHNSTON, HALLEEN & LEZINS 1972, KOYAMA, MASUDA, ARIGA & WATANABE 1979 (a) and 1979 (b).
It consists of a whole 2D-channel installed on a merry-go-round whose axis of rotation
is parallel to the span of the channel. The Coriolis force is responsible for additional
terms in the rate of production of WE ,VE and WY as indicated in Fig. 3. This
implies that the rotation tends to exchange the energy between the w and V° components,
which results in the further change of the production rate of WV . As expected, the
rotation rate does not appear explicitly in the equation of the turbulent kinetic energy

ql since the Coriolis force produces no net work.

_ The scaling laws imply a new parameter, the rotation number R, = At
or JL°C/ 9] which is positive for the high-pressure side. In this case, when "Rog
increases, there is at first the occurrence of secondary flows (TAYLOR - GORTLER vortices)
and then the development of turbulence due to the dominance of the destabilizing effects,
so that %% /u’* and —Pav and finally "g% increase with respect to the case of no-
rotation. The increasing turbulence also teﬂds to prevent the boundary layer £from
separating. Numerical predictions have been recently suggested for the evolution of the
Reynolds stress tensor. They use the fact that the time during which the turbulence is
submitted to the rotation is short with respect to its own characteristic time, so that
linear (rapid distorsion) concepts can be used (BERTOGLIO, CHARNAY, GENCE & MATHIEU 1978).

Boundary layers on concave or convex walls (Fig. 4) are present in many practical
situations such as the flow along the casing and the guiding vanes of turbomachines.
An exhaustive survey is given by BRADSHAW (1973) and additional experimental work is re-
ported by SO & MELLOR (1973) and HUNT & JOUBERT (1976). The new terms which appear in the
kinetic energy budget are due to the centrifugal force. They are listed in Fig. 4 and it _
can be noted that U /R, has the same role as —~2J.L except for the equation governing vt
(a factor 2 difference) and hence for the equation giving q* . The boundary layer on
a concave wall ( R<9©O) has therefore features similar to those which we have just described
for the high pressure side of a rotating channel.

The implication of buoyancy forces in the lower part of the atmospheric boundary
layer is well known and has been extensively analyzed by MONIN & YAGLOM (1971). Experiments
in situ (WYNGAARD, COTE & IZUMI 1971, KAIMAL, WYNGAARD, HAUGEN, COTE & IZUMI 1976, BUSCH,
LARSEN & THOMSON 1979) and simulations in the laboratory (CERMAK 1971 ; MERY, SCHON & SOLAL
1974, SCHON 1974 ; ARYA 1975 ;REY 1977 ; REY, SCHON, MATHIEU 1979 ) are at first oriented
toward a comprehensive view of the turbulence through the determination of the kinetic energy
budget (Fig. 5), the velocity and temperature spectra and the turbulent diffusion terms.

The general state is however less advanced than for unheated boundary layers with a zero
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pressure gradient. For example, no measurements seems to be available for the memory of
turbulence nor for the eventual existence of coherent events which could be of a very
distinct nature.

However, the large turbulent Reynolds numbers encountered in the atmosphere
have suggested very fine measurements such as the probability density functions of
velocity and temperature derivatives to check theoretical predictions concerning the fine
scale intermittency of turbulent flows ( SHEIH, TENNEKES & LUMLEY 1971, GIBSON & MASIELLO
1972).

The main (and practical) objective remains the dispersion of pollutants for
which the large and energetic turbulent structures are the most efficient and correctly
simulated in laboratory experiments (PASQUILL 1968 ; MALHOTRA & CERMAK 1964 ; SOLAL 1972).
The Lagrangian characteristics which are essential are however difficult to determine
directly in a way similar to the investigation of SNYDER & LUMLEY (1971) for grid turbu-
lence. A new experimental approach has recently been suggested by SCHON, DANEL, MELINAND,
REY & CHARNAY (1979) which uses combined particle displacements and stroboscopic views
of the flow by a rotating laser beam (cf. Section 3.1.4).

Sudden changes in the wall heat flux are also of interest. The case of an
inversion (sudden drop of the wall temperature) makes it possible to investigate the
relaxation of the previously structured turbulence (CHARNAY, SCHON, ALCARAZ & MATHIEU 1979 ;
AWAD, MOREL, SCHON & CHARNAY 1979). In practice it simulates the temperature step between
the atmosphere of a city and that of the surrounding country.

Boundary layers on porous wall are encountered in nuclear engineering (isotope
separation) and in turbomachinery (turbine blade cooling). In the laboratory, they are
often investigated without a pressure gradient (TENNEKES 1965 ; VEROLLET 1972 ; BAKER &
LAUNDER 1974). The main feature is again the change of the Reynolds shear stress ; it
increases for blowing, hence makes possible the artificial thickening of normal boundary
layers ; conversely it decreases for suction and can become so small that turbulence cannot
be maintained (inverse transition). More knowledge on the detailed structure of the flow
is again a pending gquestion for a comprehensive view of all the physical mechanisms involved.

3. Transducer techniques

In this section, we describe some of the most useful systems, along with the
main problems one has to be aware of in order to obtain signals which follow faithfully
the physical variables under investigation. We divide the presentation in two parts
(1) the transducer and remote systems which can be 'used, in principle, in any turbulent
field except that the presence of a wall requires special attention, and (ii) the trans-
ducers which are embedded in the wall itself.

Because of their versatility and relatively low cost, hot-wire anemometers are
well suited to the measurement of a given physical variable at a large number of points or
to that of several physical variables at a given point. Recent surveys of "multichannel"
or "multivariant" measurements are given by VAN ATTA (1979) and DEMETRIADES (1979). These
hot-wire arrays are usually designed for basic situations in which advanced research
is possible (Fig. 6 and 7)

- arrays of hot-wires (6 to 12) spanning the boundary layer in the transverse direction
BLACKWELDER & KAPLAN 1976. They permit investigation of the topology of the large bulges
limiting the free edge of turbulent flows. Thermal tagging is often very useful for
tracking sharp internal fronts and the investigations on boundary layers (CHEN &
BLACKWELDER 1978 ; LAUFER 1975) have been developed following those on jets or mixing
layers (SUNYACH 1971). These arrays are also used to investigate the possibility of
creating coherent structures by disturbing the flow in a manner which triggers inherent
instabilities (WYGNANSKI, 1979) or to follow the downstream development of a turbulent
spot artificially introduced into the boundary layer (HARITONIDIS, KAPLAN & WYGNANSKI 1978 .

- probe with three hot-wires to obtain the three components of the velocity fluctuations
(LARSEN, MATHIASSEN & BUSCH 1979 ; MOFFATT, YAVUZKURT & CRAWFORD 1979 ).

- probe with an X -wire and a cold wire to obtain two components of the velocity and the
fluctuations of temperature (JOHNSON 1959, CHARNAY, SCHON & SUNYACH 1973).

- combination of a hot-wire and three cold wires to obtain the temperature fluctuation
and the w and v velocity components (FULACHIER 1979). The volume of the probe is very
small (around 0.1 mm between each wire). This array in which the v component is deduced
from the lateral flapping of the wake of the upstream wire, is derived from the three-
wire probe designed by BEGUIER, REY, DUMAS & ASTIER 1973, which is itself an extension
of a three-wire probe first suggested by REICHARDT as early as 1938.

- array of four cold wires to obtain the three components of the temperature gradient
(SCREENIVASAN, ANTONIA & DANH 1977). The measuring volume is 1.2 x 0.9 x 0.6 mm3 .

- combination of interacting sensors to measure the concentration and two velocity compo-
nents without ambiguity problems for air-helium mixtures (STANFORD & LIBBY 1974 ;
LARUE & LIBBY 1977 ; LIBBY & LARUE 1979). The measuring volume is of the order of 0.7 mm3
and can be improved by split hot-films.
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- pyramidal probe with four identical wires located along the edges of a tetrahedron to
get the longitudinal component Wy o0f the vorticity fluctuations (KOVASZNAY 1950,
KISTLER 1952, KASTRINAKIS, ECKELMANN & WILLMARTH 1979). The measuring volume is of the
order of 2 mm-~.

- combination of an Xb—wire and a pair of parallel wires to obtain the transverse vorticity
component 105, (FOSS 1979).

- combination of a single probe, V probe and X probe to obtain the transverse vorticity
components w%.and w (ECKELMANN, NYCHAS, BRODKEY & WALLACE 1977). The largest wire
separation is of the order of 3 mm.

In all these systems attention has to be paid to various questions in order to
get an accurate response :

a) aerodynamic interference between the elements of the array ;
b) spatial resolution of the probe ;
c) time-resolution of the probe ;

d) calibration of the sensor ; detection and correction of spurious signals ;
ambiguity problems ; effect of large fluctuations ; extra cooling due to the
wall vicinity ;

e) development of low-cost and high quality electronics to operate the
elements of the sensor ;

f) acquisition and handling of the large amonts of data provided by the probe.

Since vorti¢ity is important for the dynamics of turbulence, we shall concen-
trate on the two components Wa and Wz~ which have been mainly considered so far.
For the other aspects, one can consult CORRSIN(1963)and COMTE-BELLOT (1976) or also
FREYMUTH (1978) for references.

At first, it 1s necessary to stress that the spatial resolution of the
vorticity probe is a severe limitation to vorticity measurements, at least from the compu-
tation of WYNGAARD (1969) for isotropic turbulence. In short, the probe volume has to be
of the order of the Kolmogorov scale. More precisely, the relevant parameters are 9/
and Y/ £ , where d is the wire separation, £ the hot-wire length and vy the Kolmogorov
length scale. For example, Wy 1is obtained within 3 % if y/,(_ ~ 0.32 and o ~ ¢ .

On the other hand, in the measurements of wwax , the smallest miniature pyrami-
dal probe which has been built has =~ 2 mm, so that reliable signals can only be
expected in flows with large viscous lengths, such as the oil channel at the Max Planck
Institut Filr Strdmungsforschung, originally designed by REICHARDT and described by
ECKELMANN (1974), in which &/uf = =  0.63 mm. Ordinary laboratory flows cannot
therefore be investigated for the time being. Moreover, KASTRINAKIS, ECKELMANN & WILLMATH
(1979) pointed out that the transverse velocity fluctuations v and w induce on the
pyramidal probe a signal which is of the same order of magnitude as the expected vorticity
signal (Figs. 8 and 9). Since instantaneous values of v and w are unknown, no
correction is possible.

For the ldy»component, which is probably larger than wx because of a stronger
relationship to the boundary layer field, FOSS (1979) pointed out some of the difficulties.
Besides the spatial resolution, which seems to be here again a severe limitation, FOSS
has to go through the whole analysis of the hot-wire response to large velocity fluctu-
ations.

Some short-cuts have also been suggested, such as the measurement of 7“/35-
Although FOSS (1979) thinks that errors are still possible, multipoint measurements would
be worth making for boundary layer research by taking advantage of the advanced analysis
of XUO & CORRSIN (1972) who were able to detect the shape of the vorticity structures in
isotropic turbulence (2 D elongated filaments).

The wall vicinity creates also many difficulties : decrease of the turbulent
scales, additional cooling of the sensors by the near-by wall ; occurrence of large
fluctuations. In ordinary laboratory situations, boundary layers measurements are wrong
for about wl /4 £ 5 (WILLS 1962 ; see also the accurate comparisons made by ALCARAZ
& MATHIEU 1975 for the measurement of wall shear stress by different methods).

To investigate the viscous sublayer it is then necessary : (i) to increase the
physical dimensions of this layer by use of high viscous fluid, such as glycerin (BAKEWELL
& LUMLEY 1967) or oil (ECKELMANN 1974) and (ii) to use a miniature probe such as a single
ended hot split-film (HERZOG & LUMLEY 1979) whose measuring dimensions ( = 0.25-0.15-
0.15 mm) are down to at least one-half of the viscous length ¥/u ( = 0.56 mm).

In addition, the high Prandtl number of glycerin ( Pr = 2340) has the advantage of
reducing considerably the thermal boundary layer thickness of the probe and, hence,
of suppressing the cooling by the near-by wall.

Many advantages of the L.D.A. technique are appreciated in turbulent boundary
layer investigations : the non-intrusiveness of any probe, the extraction of velocity
fluctuations from other random variables guch as temperature or concentration, the linear
dependence of the detected frequency on the velocity, the possible detection of reverse
flow simply by the use of an optical frequency shift applied to one of the laser beams
(e.g. Bragg cell). The latter is especially useful when investigating separating boundary
layers (SIMPSON, STRICKLAND & BARR 1977 ; MELINAND & CHARNAY 1979).
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Sources of concern exist, however, and we shall concentrate on some of the
most important or recent ones, particularly those which exist because of the vicinity
of a solid boundary (for a review of the L.D.A. technique see, for example, BUCHHAVE,
GEORGE & LUMLEY 1979).

At first, a practical problem arises from the fixation of the scattering
particles on the glass ports which have to be cleaned frequently. A spurious peak can
also occur in the velocity histrogram at U= © and should be deleted.

Concerning the probe volume (volume within the boundary of the optical fringe
modulation), improvements are in progress to reduce it by the use of beam expanders which
are introduced upstream of the front lens. The beam waist d*_ of the focused laser beam

is reduced as expressed by
d_;:.‘t.&_/\.
RO ¥
where de is the beam waist diameter of the unfocused laser, #. the focal length of the
lens and the wave length of the laser light. The smallest probe volume which has been
achieved so far (KARPUK & TIEDERMAN 1976) is a 244/Mw long cylinder with a diameter
of 61 sw . It is, of course, oriented so that the axis of the cylinder is parallel to

the wall and normal to the streamwise velocity. Compared to a standard single hot-wire,
the diameter of the probe volume is approximately 12 times larger, but the length of the
probe volume is approximately 2 times smaller (compared to a %*m. wire whose aspect
ratio is 100) . Further reduction is even expected, although theé number of fringes has to
be kept large enough.

As for the measuring volumes (the region of space from which Doppler signals
are received and detected by the optics), it is a priori different from the probe volume
since truncated by the detector field of view. ORLOFF (1979) and BUCHAVE (1979) stressed
this point and considered different situations, Fig. 10. For example, for the coaxial
backscattering optics often used in boundary layer investigations, the length of the

measuring volume is determined by the focal region ¢ of the receiving lens. It can
advantageously be made smaller than the probe volume length ( 2. = ‘i@ A8 ) by
choosing a receiving lens with a very large aperture, since { is given by

¢ F*A /D% (F focal length, D aperture of the receiving lens).

The spatial resolution of the method, which is critical for boundary layer
studies, has been estimated by GEORGE & LUMLEY (1973) for the continuous many-particle
L.D.A. The measuring volume is assumed to be the probe volume so that the weighting
function describing the signal transmitted by the particles has simply a Gaussian shape.
The attenuation affecting the measurements of the one-dimensional spectrum is found to

be of the order of 50 % for the Kolmogorov cut off when am*s= Y7 ®2/y ~ 0.4 (oi is the
standard width of the Gaussian function describing the light intensity in the incident
beam). For comparison purposes, the attenuation encountered with a single hot-wire is 20 %,
at the same wave-number, when %/ ~ 0.40 ( £ hot-wire length, Y Kolmogorov scale) .
For the burst type single particle LDA numerical computations do not seem to have been
carried out.

'2‘-‘—

An opposite effect due to the finite size of the measuring volume is the
noise generated by the technique itself. For the continuous many-particle LDA there are
two spurious signals (i) the so-called "ambiguity noise" which is caused by the random-
dispersion of particles in the fluid (even in a uniform flow field) and the subsequent
random phase composition of the scattered light, and (ii) the "gradient noise" due to
the spatial variation of the wvelocity (mean velocity and fluctuation) within the measuring
volume. For the burst type LDA, the first source of noise does not exist since, in principle,
there is only one or zero particles in the measuring volume. For the gradient noise,
KARPUK & TIEDERMAN 1976 estimated the error for residence time weighted signals, assuming
a rectangular probe volume and linear dependence on the distance to the wall for both
the mean velocity and the r.m.s. of the streamwise velocity fluctuation. Under these
conditions, for the time - weighted signals :

> 1% o 5thE fj
W = W — 2. O
o e AT

u% is the turbulence intensity at the center of the probe volume,
S  the velocity gradient

b the probe volume width
ff the turbulence intensity of the streamwise velocity component

where

Fig. 11 illustrates the importance of the last two terms for measurements in the viscous
layer of a channel flow. More recently, BUCHHAVE, GEORGE & LUMLEY 1979 have shown that
these terms are equivalent to those occurring in continuous LDA, so that corrections have
definitively to be taken into account. Of course, lessening the probe volume would further
reduce the corrections by a substantial amount.

The two sources of error which we have just presented (and which act in
opposite directions) affect the turbulence spectra. Fig. 12 illustrates the results usually
obtained (BUCHHAVE, GEORGE & LUMLEY 1979 ; MELINAND & CHARNAY 1979). Much too high levels
are obtained at high frequencies, even for burst type LDA, which shows that the error due
to the velocity gradient within the measuring volume is much greater than the error due to
the averaging effect of the measuring volume. Hot~wire anemometry seems therefore, at least
so far, to be better suited than laser Doppler anemometry for measurements of turbulence
spectra (only a single source of error for which exact corrections are available).

An important shortcoming of the conventional LDA is that it measures the
velocity at a single point in the fluid. To obtain the complete flow pattern, the
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experiments have to be repeated, which requires either an accurate mechanism to move the
LDA or the flow relative to each other, or a scanning optical system (zoom). The latter
is very flexible and allows displacements up to several meters (e.g. used to investigate
the instantaneous flow around a large model of helicopter rotor in a wind tunnel,
BIGGERS & ORLOFF 1974) . The spherical aberration, however, has to be analyzed in detail
because the system is either over-compensated or under-compensated when used outside its
range of design (ORLOFF 1979). The subsequent changes in the measuring volume and in the
errors have therefore to be estimated in every set-up, of course in relation to the size
of the flow structures to be reached.

In many industrial studies it is not possible to position the necessary
window so as to permit direct optical access to the point under investigation. An ingenious
"endoscopic" L.D.A. has been therefore designed by DANEL 1976 with the hel» of ontical
fibers, Fig. 13 a. The size of the optics is reduced considerably, even when three
different wave lengths are used to obtain the three components of the velocity. Moreover,
what 1s believed to be the first extensive use of optical fibers is presented : a coherent
fiber (with an oil immersion joint) from the laser to the optics and an ordinary fiber
from the optics to the photo-multiplier.

The use of optical fibers can also improve multi-points measurements
(NAKATANTI, YORISUE & YAMADA 1979, Fig. 13 b). Two thin beams obtained by expanding laser
beams with spherical and cylindrical lenses, are used as the incident beams into the flow
field. A two-dimensional intersection is hence formed, and a set of ordinary optical fibers
are used to receive the light intensity in the image plane. Instantaneous velocity profiles
(both normal and transverse components) have been obtained in a branch tube at 8 points
from the wall. The spatial range covered ( 2 1 mm) is small in comparison to that covered
with the zoom technigue. However one can consider focusing the spatial range over the
specific region of interest in an otherwise large flow field ( wall vicinity, inner edge
of a separating flow).

Finally, a detailed description of a turbulent boundary layer also includes
the analysis of intermittent phencmena such as the directional changes within a separating
boundary layer or the alternation of turbulent and non-turbulent regions at the free edge
of the layers. If the former case can be dealt with by the LDA technique alone (of course
with the use of Bragg cells), the latter requires generally some tagging procedure.
SIMPSON, STRICKLAND & BARR (1977) used smoke and an auxiliary concentration probe whereas
MELINAND & CHARNAY (1979) seeded only the fluid of the boundary layer. Intermittency
coefficients seem to be attainable from the abrupt change which occurs in the distribution
function of the time interval between two successive validated LDA signals. In hot-wire
anemometry the occurrence of a similar break in the probability curves of the velocity
derivatives was sometimes used (SUNYACH 1971).

This technique is based on the time of flight of a particle between two foci
(Fig. 14). The fringe pattern of the LDA technique is thus replaced by two discrete light
spots. Then, a particle which goes through the two foci emits two successive pulses of
scattered light. This method, suggested by THOMPSON (1978) and TANNER (1973), was greatly
improved by SCHODL (1976, 1977) for use in turbomachines.

The striking advantage of the method lies in the very small dimensions of the
probe volume : the diameter of the focus is of the order of 10 #w and the distance between
the two foci is between 0.3 and 0.5 mm. Measurements can therefore be made in narrow
channels (such as the blade channels of centrifugal compressors). Moreover the possibility
to set small apertures in the optics reduces the ncise due to the background radiation
generated by the solid surface even in the backscattering mode of operation (Fig. 14).

To take the presence of turbulence into account , the line between the two foci
has to be set at first along the mean flow direction and then at various different angles
with this direction, in the range of the velocity angle fluctuations. The histograms of
the time of flight correspond therefore to a whole set of conditional probability functions
from which the joint probability of the velocity (and hence any moments) can, in principle,
be deduced. Various corrections have been developed to take into account the broadening
effects due to the particle and the probe volume. To carry out the measurements, fast elec-
tronic equipment is used (a few nanoseconds for a fluid velocity of 500 m/s, AT= 0.85ms ).
Fach measurement, e.g. each setting angle, requires, however, a long time of observation
(3-5 minutes depending on the particle concentration).

This method deserves to be used in the future as it provides useful results
in a hostile configuration. New research has been initiated in this area (VOUILLARMET
1979).

3.1.4. Visualization

Since the pioneering works of HAGEN or REYNOLDS on turbulent flow visuali-
zation, techniques have been developed continuously and in many cases they allow guantita-
tive results to be obtained (MERZKIRCH 1974).

Among the well-known techniques there 1is firstly the hydrogen bubble visuali-
zation method which has enabled KLINE and his co-workers (1967) to discover organized
structures in the vicinity of the wall. Later, this method made it possible for KIM, KLINE
& REYNOLDS 1971 to clarify the chain of events leading to an overall model of bursting.
Observations of smoke-filled boundary layer (pyrotechnic smoke or oil vapour), with
emphasis on the smoke concentration, have shown various aspects of transition, the develop-
ment of turbulent spots and the interaction of boundary layer and free stream (FIEDLER &
HEAD 1966 ; FALCO 1977) .Combined with hot-wire anemometry (although in a manual way),
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the technique has allowed some particular large and small scales motions to be identi-
fied (FALCO 1977). Observation can also be made with cameras moving at a speed chosen to
go along with selected structures (CORINO & BRODKEY 1969).

Thermal tagging is a very convenient way to detect the free edges of turbulent
flows (SUNYACH 1971). Although the coincidence between the thermal and kinetic boundaries
has not been proved theoretically, it has been suppnorted by many experiments : measurements
of the thermal and kinetic intermittency factors or simultaneous recordings of the velocity
and temperature signals (DUMAS, FULACHIER & ARZOUMANIAN 1972 ; KOVASZNAY & FIRASAT ALI 1974 ;
CHEVRAY & TUTU 1978). The method is particularly well suited for the edges of boundary
layers evolving with turbulence in the external stream (CHARNAY, COMTE-BELLOT & MATHIEU
1976) . When used to detect structures embedded inside the turbulent boundary layer, the
mixing of fluid elements issued from various varts of the flow can blur the features of
the structures to be tracked. It is therefore expected that the method would be limited
to short times of observation following the heating by pulses of a selected region of the
flow, (such as in the detection of events coming from the wall FULACHIER, ARZOUMANIAN &
DUMAS 1978) , or to the visualization and detection of sharp fronts which suddenly affect
the whole thickness of the boundary laver (CHEN & BLACKWELDER 1978) as already observed
in mixing layers (SUNYACH 1971, Figs. 15 and 16).

To pass on now to more recent techniques, many deserve attention :

a) the "smoke-wire" technique suggested by CORKE, KOGA, DRUBKA & NAGIB (1977). It consists
of a vertical wire onto which regulated drowns of oil are allowed to fall, coating
the wire along its length in the form of minute dronlets. Discrete streaklines are
then formed from each droplet by burnina off the oil through resistive heating. The
method seems to be comparable, in its quality (but perhaps not in its simplicity) to the
hydrogen bubble technique used in water. Work is in progress at the University of Notre-
Dame to visualize the transition in the mixing layer of sevarating bubbles on airfoils
(MULLER, private communication).

b) the use of a glass-rod to fan-out a laser beam (BANDYOPADHYAY 1978). Slices of a smoke !
filled boundary layer can thus be illuminated. Cine films combined with hot wire data
give information on the large scale motions (sharpness of the upstream interface, :
existence of vortices extending throughout the boundary layer with their axis preferen-
tially oriented at about 40° to the wall. Further details will probably be made available
during the meeting (HEAD & BANDYOPADHYAY) .

c) the use of fluorescent varticles, excited by laser, such as rhodamine 6 G dye or uranin
dye, in the case of liguids. DIMOTAKIS, LYE & MORRISON (1978) extended the technique for
gases. This method which has been apnlied to Jjets, has shown that external unmixed
fluid can be found all the way to the jet axis.

d) the generation of a high speed rotating laser beam to illuminate, at regular time
intervals, small particles injected into the flow (SCHON, DANEL, MELINAND, REY & CHARNAY
1979) . The successive positions reached by the same varticle moving in the plane swept
by the beam can be photographed and analyzed to obtain the velocity component in that
plane and the corresponding Lagrangian correlation function (Fig. 17). The trajectories
of several particles can also be vhotographed at once if the flow 1s seeded accordingly.
In the present experiment, the mirror is made ur of 16 facets set on a cylindrical support
(5 mm in diameter) rotating at 4 000 R.P.M, so that the time interval between two sweeps
is 1 ms. The injected particles are droplets of dioctylphtalate (diameter = 1| fu ).
Small power lasers are well suited for this exveriment since the particles receive all
the light of the laser at the instant they are photographed.

e) the analysis of the light scattered by highly anisotrovnic particles which get oriented
in a preferred way in the flow, depending on the rate of the deformation-tensor. Direct
measurements of the velocity gradients f)U;/”)x' have been attempted (JOHNSON 1975
with tobacco virus which is 3 000 A in length arfd 150 & in diameter ; PETIT 1979
with thermal spots induced by a high power laser and distorted by the flow).

f) small mirrors embedded in tiny hollow glass sphere have also been suggestéd by WEBB
(private communication) to obtain the instantaneous and local value of the vorticity
tensor. This work is now in progress.

g) three dimensional high speed movies have also been used in an attempt to locate the
large scale structures of flows (PRATURI & BRODKEY 1977), but difficulties arise because
the features of the phenomena to track are not sufficiently defined.

Several physical variables are of interest at the wall such as pressure, wall
shear stress and velocity gradient for unheated boundary layers. Elaborate devices have
been developed and data obtained in some cases at a large number of points.

The status of the measuring techniques and the understanding of the pressure field
under turbulent boundary layers have been recently presented by WILLMARTH (1975 D).
We shall therefore concentrate here on specific points,

At first, there is the attenuation caused in the high frequency range by the
finite size of the pressure transducer. Corrections have been made by CORCOS (1963, 1967) °
in the case of transducers mounted flush with the wall. Their application to real cases is
however inaccurate. The first reason is that the measured data from which one starts are
far too much attenuated (down to 0.011 for wd /U = 10 with d diameter of the
sensor). The second reason is that a simple similarity shape of the cross-spectral density
function f‘(“{)§“’§£) has to be assumed for both very high frequency ) and very small
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longitudinal or transverse gseparation Eﬂ and ?ﬂ_(experimental results are obtained up to
WI*/ Uy = 5ie. wa/uty = 0.4).

Pin-hole transducers have therefore been introduced to improve the spatial
resolution, the diameter of the probe being 3 to 4 times smaller than the diameter of the
transducer itself. They have, of oourse, to be used below their own resonant frequency
which can be estimated by considering the system as a Helmholtz resonator or by using a
more elaborate theory for the transient response of the orifice and (or) experimental
tests (LIMURA & HATANAKA, 1973)., For example, with the dimensions indicated below which
are close to the miniature sensors developed by BROOKS & HODGSON 1979.

0.36 mm
\Q_}\\l\\\_\\_____o .1 mnm
\\ \__ —_——_— 1 0.1 mm
\ AT \
\ KOLITE \

the resonant frequency is found to be 41 kHz and 31 kHz by the two methods resmectively.

The flow disturbance at the pin-hole orifice is however a matter of concern.
BULL & THOMAS 1976 took careful measurements with the same measuring surface which is either
a wall portion or a pin-hole orifice and found that a definite systematic error exists,
the pin~hole data being too large by a factor of about 4 when uJﬁ/uthL 0.10 (Fig, 18).
A comparison with the scale of turbulence does not seem to have been made. It is however
possible, from the parameters which are given, to find that wiu/u‘ 2 0.10 corresvonds to

Kd 2, 2.2. The flow pattern is however not known so far and more information would
probably be gained from the recent analysis by ROCKWELL & NAUDASCHER (1979) concerning the
self sustained oscillations of impinging free shear layers, in particular in the case of
cavities. Anyway, the Kd 1limit has to be compared will the smallest scales present in the
pressure field. This is not an easy question to answer because the pressure at a given vpoint
depends on the whole surrounding velocity field. The theoretical prediction made by PANTON
& LINEBARGER 1974 (who keep only the linear terms in the velocity fluctuation when resol-
ving the Poisson equation governing the pressure field) leads to a cutoff located at
Kit/wp™ 0.10 i.e around wlg/uf{ ~ 0.6. On the other hand, a rough estimate can be

made, assuming that the smallest velocity scales making un the pressure field at the wall
are those located at the edge of the viscous sublayer. In that case yuw{/& = we/u =~ 1
and  Ueyy ~ U = Swuy , which leads to a much higher limit, w&/u¥p ~ ' 5. More infor-
mation is certainly to be gained from several experimental works now in progress in air
(BULL 1979, BROOKS & HODGSON 1979) and in water (BENARROUS 1979),

The obtention of the 1 D wave-number spectra form the frequency spectra
presents some difficulties in the lower K~ range. The reason is that the convection
velocity strongly depends on the wave-number (WILLS 1970). Microphone arrays acting
directly as wave-number filters have therefore been suggested (MAIDANIK & JORGENSEN 1967 ;
BLAKE & CHASE 1971). Non zero values of the W - spectra are then obtained when K, = 0
and are most useful in the prediction of the noise radiated by turbulent boundary layers.

Concerning the multi-point and multi-time measurements, the spectacular displays
offered by EMMERLING, MEIER & DINKELACKER (1973), and DINKELACKER, HESSEL, MEIER & SCHEWE
(1977) , by means of a Michelson interferometric technique have to be recalled (Fig. 20).

The pressure fluctuations cause a deflection of the membrane covering the 650 small holes
of the measuring plate (hole diameter ¢ = 2.5 mm so that ¢’“¥1&,= 56) and this causes a shift
of the fringes which are photographed - 7 000 frames/s - during 30 seconds. For example,
positive pressure patterns which are at first intense and roughly circular, then larger

in the cross stream direction, have been identified. Connections with the ejection and
burst sequence will probably be made in the near future.

Finally, considerable information can be gained from the numerical resolution
of the full Navier Stokes equations as developed by SCHUMANN in 1975. Comparisons of the
numerical and experimental values of the wall-pressure level can first be made (the
numerical value is p'/puw'y ~ 2.4 and the experimental data give p’/pu'¢ in the range
2.4 to 3.6 (Fig.19 )., It would also be interesting to compare the eventual organized struc-
tures generated in the model with those observed in real flows. (Figs 20 and 21).

3.2.2, Wall shear stress fluctuations

Hot-film embedded in the wall or laid directly on it can be used to obtain the

two components of the velocity gradient at the wall, PV /7Oy and'WV%/ﬁg. (LUDWEIG 1950,
LIEPMANN & SKINNER 1954, BROWN 1967). Two questions, however, have to be considered care-
fully in order to get correct measurements : (i) the non-linearity of the exvression

~ T,, /3 relating the surface heat transfer to the surface shear Ty ; here,
corrections are compulsory because the wall shear Stress fluctuations are large (the r.m.s.
value of JU is about 0.30 times that of 2W/?4 ) ; (ii) the spurious heat transfert
to the substrate which affects the frequency response of the film (BELLHOUSE & SCHULTZ 1966),
BRISON, CHARNAY & COMTE-BELLOT 1979) ; the film suoporting material has therefore to be
propverly selected and isolated from the wall ; fluids with high Prandtl number (water, oil)
can also be advantageously used. Calibration of the single film (measurement of ’DU//DH_)
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is done by reference to data obtained with a Preston tube or to the static pressure gradient
in a fully developed pipe or channel flow. For the hot film arranged in a V-configuration

to measure "W /7 , it is usually assumed that the sum of the two signals is proportional
to HU/D and that the difference produces a signal proportional to’)ky’)?, at the wall.

Several results have been already obtained. SREENIVASAN & ANTONIA 1977 and
also SANDBORN 1979 have described the highly skewed characteristics of the probability
density of'WLL/QjH (with large positive values) a result which is compatible with the skew-
ness factors of the longitudinal velocity component w (COMTE-BELLOT 1965, KREPLIN &
ECKELMANN 1979 a). The extensive surveys of BLACKWELDER & ECKELMANN 1979, and KREPLIN &
ECKELMANN 1979 b, deal with space-time correlations and quadrant probability analysis.

The results indicate that the pair of counter-rotating streamwise vortices pointed out by
BAKEWELL & LUMLEY 1967, occur frequently in the wall region and that the low speed fluid
is pumped away from the wall by the vortex pair.

The electrochemical technigque has been also used to measure the limiting values
of ’)U/’)‘} and D) W/9y at the wall (MITCHELL & HANRATTY 1966, MIZUSHINA 1971, SIRKAR &
HANRATTY 1970, LEBOUCHE 1968 and PY 1973). This technique is the mass transfer analogue
of the constant temperature anemometer when the chemical reaction at the electrode embedded
in the wall is working under the diffusion - controlling conditions. This is necssible for
large Schmidt numbers, with an appropriate choice for the reactors (redox counle) and
addition of a large excess of an unreactive electrolyte to the solution. For avplications to
boundary layers, many refinements have been added to the technique : develoovment of array
of electrodes (up to 20 in the spanwise direction) analysis of the frequency response,
effect of the setting angle of the electrode relative to the flow direction, detection of
reversed flows, analysis of non-linear effects. In particular, HANRATTY and his co-workers
were able to measure very accurately the spanwise spacing A between the streamwises
vortices close to the wall, A“L/b ~ 105 (LEE, ECKELMAN & HANRATTY 1974).

4, Signal processing

The conventional averages (i.e. moments, correlations, spectra, probability
density functions...) are well known techniques. We shall not describe them, but just
emphasize the large amount of information they provide in many technical problems
(for example, rotating boundary layers). For more sophisticated problems to analyse in
basic cases, they constitute the first sten of any investigation (localisation of region
with high skewness factor for the time derivative of velocities ; obtention of the space
and time coherencies...) In a second step, contribhutions from various fields or from
various events are sought. The use of conditional sampling in combination with ensemble
averaging and the introduction of pattern recognition techniques are then compulsory.

To illustrate this point, an excerpt from the original story of MOLLO-CHRISTENSEN (1971)
can be quoted :

"One has to be careful not to be misled by looking at averages, since averages
may hide rather than reveal the physics of a process. An absurd example may serve as an
illustration. Say that a blind man using a road bed sensor attempted to find out what motor
vehicles looked like. Happening to use a road only traveled by airport limousines and
motorcycles, he concludes that the average vehicle is a compact car with 2.4 wheels.

He might later attempt to construct a theoretical model of the mechanics of such a vehicle,
and may attain fame for a tentative model that looks like a motorcycle with a sidecar whose
wheel is only in contact with the ground forty percent of the time. In turbulent shear

flow, this kind of a vehicle has been called an "average eddy", and may or may not exist..."

In this method separate averages are obtained inside and outside the turbulent
bulges occurring at the free edge of the houndary layer. This involves the generation of
an intermittency function T(t) which takes the value unity in the turbulent region and the
value zero in the non-turbulent region. Many ways to generate'I(b) have been suggested,
based either on the velocity signal alone through the combination of one or more time
derivatives (KAPLAN & LAUFER 1969, KOVASZNAY, KIBENS & BLACKWELDER 1970, SUNYACH 1971,
HEDLEY & KEFFER 1974, KIBENS, KOVASZNAY & OSWALD 1974) or on the concentration of a
contaminant introduced into the turbulent part of the flow, such as heat (SUNYACH 1971,
LARUE 1974, CHEN & BLACKWELDER 1978, ANTONIA, PRABHU & STEPHENSON 1975). The latter
solution is the only one possible when turbulence exists in the free stream (CHARNAY,
COMTE-BELLOT & MATHIEU 1976). Uncertainties affect the signal T(t) so that the use of
pseudo-turbulent signals has been suggested to improve the settings of the intermittency
meter (ANTONIA & ATKINSON 1974, KIBENS, KOVASZNAY & OSTWALD 1974). On the other hand, when
thermal tagging is used, the temperature in the external "cold" zone rises slightly when
4/%  decreases (CHEN & BLACKWELDER 1978 ; CHEVRAY & TUTU 1978). This could be due to
molecular conduction (FULACHIER, ARZOUMANIAN & DUMAS 1978). It is therefore necessary to
estimate the amount of fluid which is mislabelled by the threshold (ANDREWS 1972,
HAVERBEKE, WOOD & SMITS 1978 ; BLACKWELDER 1979). Such an attempt to find the correct
T(t) may be considered as similar to the pattern recognition technique (section 4.2).

Many examples of zone averages are now available. In Fig. 22 we have selected
the results which deal with the Reynolds stress for a turbulent boundary layer evolving
in an external flow with free turbulence (after CHARNAY, COMTE-BELLOT and MATHIEU 1976).

In this case samples are taken at a specific point, §uch as on the turbulent/
non-turbulent interface, i.e. when If(t) jumps from zero to unity or conversely.
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Comparisons between the leading and trailing edge characteristics are thus pegsible, They
can be moreover extended to points located near the edge, on either side. by adjustement
of the time delay and appnlication of the Taylor hyvothesis, using the local mean velocitv.

The most interesting examples - Fig. 23 - deal with the Reynolds stress distri-
bution which can be associated with the entrainment of the bulges (ANTONIA 1972, HEDLEY
& KEFFER 1974). Large values occur at the trailing edges of the bulges. They do not match
the external values so that entrainment is negligible. On the contrary, smallvalues occur
at the leading edge where most of the entrainment takes vlace.

Instead of being triggered by the signal T(t} the samoling can be driven

by a well defined external signal. Ensemble averages then allow us to retain only the deter-
mlnlstlc (perlodlc) components. In that case, the electronic equipment is sometimes called

"signal averaging" or "eductor". Then, subtraction of this ensemble average from every
sample allows us to obtain the random components exclusively. An example is given in Fig. 25
bis, for the pressure measured on one blade of an industrial rotor. The pulse signal is
given by the rotating shaft., Upstream of the rotor there is a rod which creates a wake
which strikes the selected blade at each revolution (MICHEL, ARBEY & SUNYACH 1979) . This
set-up is an extension, for rotating machines, of the wake cutting experiment of FUJITA &
KOVASZNAY 1974, It allows us to estimate the discrete and large-band noise radiated in
the far field, from the veriodic and random pressure fields on the blade.

Up to this point, only one condition has been considered to select the samples.
It is possible to restrict the choice by several conditions. An example is the four quadrant
analysis of the instantaneous wy (t) product in wall shear flows (LU & WILLMARTH 1973).
If one tries to get the signature of the ejection events, three conditions are needed :
w<o , v >0 and |wv]| /uv’' > H,an adjustable threshold to separate the "weak"
from the "violent” ejections (COMTE-BELLOT, SABOT & SALEH 1979 ; Fig. 24).

4.1.3. Conditional averaging with_correction_for_random_ convection velocity

In the above sections, the detector signal is taken orecisely at the point
which is selected for the measurements, or in its immediate vicinity. When a large down-
stream distance separates the location of the condition from the location of the measure-
ments, a phase scrambling affects the received signals with respect to the detector signal
because of the random motion of the pattern (e.g. variation in the convection velocity) .

It is therefore necessary to apply a delay time to the received signal to recover the event
of interest (Fig. 26). An iterative process is then developed to select the ontimum delay
time for every signal (BLACKWELDER 1977 ; WYGNANSKI 1979). The "realigned" signals are

then used for the correct ensemble average to be performed. In some cases, the motion and
the evolution of the event to track are so large and unpredictible thatdifficulties subsist.
For example, the spanwise buffeting of a turbulent "spot" in a turbulent boundary layer is
almost beyond reach (HARITONIDIS, KAPLAN & WYGNANSKI 1978).

4.2. Pattern_recognition

This technique has been introduced by WALLACE & BRODKEY & ECKELMANN 1977.

A pattern is first devised for a selected physical variable on the basis that it is relevant
to a typical event or flow structure. For examole, in the wall region, large values of the
skewness factors of the tlme derivative of the longltudinal velocit comoonents

S = (_Qu./‘M:P /[l(’bu/'g\:)t] ¢ are obtained ( 3, & 0.80 for 20 £ Y- i/p < ; Fig. 27).
A pattern which lows such a feature is therefore squested for the veloc1ty component.
It consists of a gradual deceleration from a local maximum followed by a strong acceleration
(Fig, 28). This pattern is then applied to the measured signal w (k) as a "filter" to
select the parts which meet the criteria. Rather broad thresholds are used for the rate of
increase and decrease of w(t) so that the number of accepted events is large enough to
form a significant collection. Comparisons between this technigque and the four-quadrant
analysis are interesting, but difficult, because of the difference which exists in oractice,
in the conditions imposed on the signals in the two methods.

In the development of the technigue we can expect simultaneous multi-point
measurements. The excitation by an external source of the coherent structures themselves
would be rewarding both for its experimental advantage (recognition of "evoked" structures,
WYGNANSKI 1979) and the comprehension it would bring of the growth of boundary layers.

5. Conclusions

The state of the art in the investigation of wall turbulent shear flows is
different for the fundamental case of boundary layers without a pressure gradient than for
the different cases met in practice (atmospheric boundary layers, boundary layers along
curved walls and on rotating blades in turbomachines). In the first case, much information
has been obtained not only of the statistical characteristics of the flow but also of the
existence of recognizable structures. Interest lies, at present, in the study of the physical
mechanisms which control these structures and the growth of the boundary layer. In practical
situations, the values of the extra-strains are of primary importance both for a general
understanding of the flow and for the satisfactory modelling needed in engineering design.

It follows that some future trends in experimental boundary layer research can
be forecast. Attention will probably be vaid, at first, to multi-point and multi-time measu-
rements in order to understand more precisely the origin and the evolution of the main events
making up the boundary layer. Hot-wires arrays are well suited for this tyve of investi-
gation. This is especially true when thermal tagging is used, as the hot-wires, which are
operated at a low overheat ratio, do not require sophisticated electronics. Aerodynamic
pertubations have, however, to be analyzed before accurate measurements can be made. As for

v
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the L.D.A. technique which is ideally suited to sevarated flow investigations, the
introduction of optical fibers will probably bring refinements and adantability to various
configurations (not only for multi-point measurements but also for those made at locations
difficult to reach with conventional laser instrumentation). On the other hand, visuali-
zation of large parts of the flow (in one or several planes, with one or several colors)
and the quantitative processing of this optical data would merit investigation.

Concerning the processing techniques, the use of conditional averages will,
no doubt, remain mandatory in all the basic flow configurations. The pattern recognition
technique will be a powerful way to trace important events. Of course, intuition is needed
to define the specific patteirn to be looked for and the normalisation conditions to be
introduced for subsequent processing. A simplier use of this thechnique is the investi-
gation of the response of the flow to known perturbations applied to the boun@ary layers.
Corrections for phase scrambling have to be considered when following Lagrangian events
in a Eulerian frame, but they may be beyond reach when large random motions are present.

In conclusion, much can be gained in the understanding of turbulent boundary
layers by keeping abreast of similar developments in other flows (jets, mixing lgyers)
and also of the stability studies in both linear and non-linear analyses. Attention should
also be paid to the development of direct numerical simulations of turbulent flows.
The space-time evolution of the structures which mimic those met in real flows could thus
be more easlly understood and, perhaps, better controlled in future research.
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Fig.

15

Instantaneous temperature f£luctuations in of a two-dimensional mixing layer.
The six temperature probes are 1.5 mm apart across the layer and are located
8 cm from the origin. Note the sharp temperature gradients existing across
the layer, which are believed to be associated with vorticity layers.
(Arrows show one such layer). The temperature difference between the two
streams is 25°C. The high-velocity side corresponds to the lower traces.

U, =18 m/s ; U, = 0. Time increases from left to right. Horizontal scale:
1 em = 1/150 s ; vertical scale : 0.1 cm = 2.8°C. (SUNYACH 1971 ;
LAUFER 1975).

Fig. 16 - Simultaneous temperature signals in a turbulent boundary layer on a

slightly heated plate (= 12°C). The horizontal time span is 18.7 UcA\f/y
( Ue = 4.57m/s, T = 92.42 cm). A particular temperature front is
denoted by the arrows (CHEN & BLACKWELDER 1978)
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Pig. 22 - Example of zone averaging : values of Reynolds stress inside the
bulges (a) and outside the bulges (b) for a turbulent boundary layer
with free stream turbulence (CHARNAY, COMTE-BELLOT & MATHIEU 1976)
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gradient (HEDLEY & KEFFER 1974)
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Fig. 25 - Example of periodic averaging : wall pressure spectra on a rotor blade
in the case of upstream disturbances (MICHEL, ARBEY & SUNYACH 1979)
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Fig. 26 - Conditional averaging with correction for random convection.The upper
curve shows the original pattern P(0, En]obtalned from the marked indi-
vidual time points of the w(0,t] signal upstream. The indicated time
points of the downstream 51gnal in the middle trace are used to form one
of the P (Y tw+ Tk ) patterns. The variance between the patterns as ZLi
is varied is shown at the bottom. The minimum value at T,¥* corresponds
to the "best" match between the patterns. (BLACKWELDER 1977)
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ETUDE EXPERIMENTALE DES APPORTS ET DES EJECTIONS
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SOMMAIRE

Les résultats expérimentaux présentds concernent aussi bien la structure de la zone interne
. A
qu'externe de la couche limite.

Pour &tudier la phénoménologie du champ turbulent, la chaleur est utilis&e comme contaminant
passif dans de nombreux cas d'expé&riences.

Dans la sous—couche viqueuse, 1'@coulement a un caractdre d'intermittence tr&s net; en particulier
les apports de fluide en provenance des zones plus &loignées de la paroi 1l'emportent nettement devant
les &jections et pénétrent,par instant, jusqu'au sein de la sous-couche.

Lorsque l'on s'éloigne de la paroi, le nombre d'apports diminue et devient du m@me ordre que
le nombre d'éjections de la zone pleinement turbulente. Les mesures de corrélations spatiotemporelles

laissent a penser qu'il existe au moins dans 1la zone internme une liaison entre les apports et les
éjections qui sont prépondérantes.

Des mesures de probabilités conditionnelles montrent que les trajectoires de ces perturbations
sont en accord avec celles obtenues par visualisations ou mesures de diffusion thermiques & partir d'un
point situé & la paroi.

En outre,des mesures de corrélations spatiotemporelles en trois points indiquent que les &jections
sont plus cohérentes et plus minces en envergure que les perturbations correspondant aux apports.
Ces Ejections s'dlargissent lorsque 1l'on s'8loigne de la paroi et diffusent 3 travers la couche limite.

SUMMARY

The experimental results which are presented concern the structure of the internal and external
zone of the boundary layer.

To study the turbulent field, heat is used as a passive contaminant, in many experiments.

In the viscous sublayer, the flow has obvious intermittent characteristics; particularly the
inward flows from regions which are farther from the wall prevail over the outward flows and penetrate
the sublayer randomly.

As the number of inward flow decreases with uncreasing distance from the wall, it becomes of
the same order as the number of outward flow in the fully turbulent region. The measurements of the
space-time correlations reveal that, at least in the internal region, there exists a linkage between
the inward and the outward flows, the latter being the more dominating.

Measurements of conditional probabilities show that the trajectories of these disturbances are
in agreement with the trajectories obtained through visualizing or measuring thermal diffusion from
a point located at the wall.

Additionally measurement of three point space-time correlations indicate that the outward flows

are more coherent and spanwise thinner than the disturbances corresponding to the inward flow. These
outward flows expend when moving off the wall and diffuse through the boundary layer.
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1. INTRODUCTION

Bien que la couche limite turbulente soit bien connue en ce qui concerne ses propriétés moyennes,
le mécanisme profond de création de la turbulence pré&s de la paroi,notamment, et de son interaction
avec la turbulence préexistante est encore un sujet de discussions. Des schémas d'ailleurs partiels
sont propos&s; on peut se reporter aux articles récents de Praturi et Brodkey (1) et de Blackwelder (2).
Une vue générale de lacouche limite est donnde par Willmarth (3). Cependant tous les auteurs sont
d'accord sur un certain nombre de faits : il se forme continuellement prés de la paroi (y +m 10) des
structures allongées instationnaires de périodicité moyenne en envergure de l'ordre de 50 ¥ (4)

u
qui sont &jectdes dans la zone interme (y+£100) en donnant lieu 2 des fortes bouffdes de t:;bulence,con£or—
mément amxvisualisations de Kline et al.(5). Ce processus semble &tre 1ié & celui observé par Corino
et Brodkey (6); les bouffées de turbulence sont décrites comme résultant de l'interaction de fluide i
vitesse relativement &levée("sweeps'")avec du fluide plus lent en provenance de la paroi ('&jections"),
Certaines analogies sont faites avec les instabilit&s conduisant d la formation des '"spots' de tur-
bulence dans la transition laminaire-turbulent sur une paroi lisse; en particulier, le phénoméne est
essentiellement tridimensionnel. Quant 3 la périodicité& moyenne du phénoméne, elle semble plut8t &tre
liée aux paramétres globaux u, et 8 (7). Toutefois, il n'est pas &tabli que le processus conduisant 3

une bouffée de turbulence soit sous la dépendance de grands tourbillons préexistant dans la zone
pleinement turbulente par exemple. La question est &galement posée en ce qui concerne la diffusion des
bouffées de turbulence en aval 3 travers la couche limite; en particulier,est-ce que les protub&rances
de turbulence lans la zone d'intermittence sont en relation directe avec les &jections depuis la paroi ?
A ce propos,notons que,le volume des protub&rances &tant beaucoup plus grand que celui des &jections,

il ne pourrait s'agir que d'entrainement de fluide,de fagon analogue au grossissement d'un tourbillon
au cours du temps,ou alors d'un phénoméne "d'apairage".

Les résultats expérimentaux qui sont présentés ci-apré&s concernent principalement la fréquence
des perturbations, &jections et apports, leurs trajectoires pré&s de la paroi, leurs développements i
travers la couche limite et enfin leurs caractéres tridimensionmels. Ils sont analysés compte tenu des
schémas précités. Notons que nous appélerons &jections,des séquences oli le fluide est en provenance
d'une région plus prés de la paroi que la position de mesure considérée; il n'y a pas nécessairement
concordance avec les "&jections" précitées, observées par Corino et Brodkey. Nous appé&lerons apports,
des séquences oli le fluideest enprovenance d'une région plus &loignée de la paroi que la position
considérée; 13 encore il n'y a pas nécessairement concordance avec les "sweeps' mentionnés précédemment.

Les techniques de mesure utilisent essentiellement les cogrélations spatiotemporelles triples
(8,9) en deux points et en trois points (10 a et b) ainsi que les contingences spatiotemporelles
(11, 12). La paroi &tant lég&rement chauffée, la chaleur est utilis@e comme contaminant presque
passif servant d'indicateur (13, 14, 15).

2, METHODES DE MESURES ET CONDITIONS EXPERIMENTALES

Les mesures ont &té effectuées dans deux types d'@coulements. Les zones & proximité de la paroi,
et notamment la sous-couche visqueuse,ont &t& analys@es & partir de mesures effectuées dans un conduit
cylindrique de section circulaire; au deld de y+%20, 1'analyse a été faite & partir de résultats
expérimentaux obtenus dans des couches limites de plaques planes.

Dans ces différentes expériences, les parois pouvaient &tre légé&rement chauffées, les &carts de
température maximaux, 8 —ee, gtant de 1'ordre de 20 K. Avec les vitesses maximales utilisées

(010 ms~! ), méme au voisinage de la paroi, on peut considérer que la chaleur se comporte comme un
contaminant pratiquement passif, tout au moins en ce qui concerne les fluctuations (l4). Toutefois,
on doit signaler que m@me ce léger chauffage de la paroi entraine une modification de la composante
v de la vitesse moyenne perpendiculaire i celle-ci (16, 17). Ainsi, 1'&tude de la structure du champ
turbulent a &té faite soit & partir des fluctuations des composantes u' et v' de vitesse, soit &
partir des fluctuations de température. En effet, la distribution de la température instantanée,e,
est sous la dépendance du vecteur vitesse instantanée (14, 18). Lorsque la chaleur peut &tre
considérde comme un contaminant passif, comme c'est le cas ici, sa diffusion par la turbulence peut
8tre utilisde pour décrire le champ turbulent et plus spécialement les structures i grandes &chelles.
En d'autres termes,comme le souligne notamment Bradshaw (19), la chaleur permet de marquer le fluide;
de plus,1'utilisation d'&chantillonage conditionnel permet de connaitre la provenance des masses
fluides considérées.

2.1. CONDITIONS EXPERIMENTALES

2.1.1, Conduit Cylindrique

Il s'agit d'une conduite de section circulaire (15) de diamétre 2a = 76,6 mm,de longueur L = 1116 mm,
dont la paroi peut @tre chauffée. Elle est précé&dée d'un tube de 52 diamétres de long environ dans
laquelle se développe un &coulement turbulent isotherme. Les mesures sont effectu@es dans une section
situde a4 12,8 diamétres du d&but du chauffage. Les grandeurs caractéristiques de 1'écoulement sont
les suivantes : u_ = 8,27 ms—1 , uy = 6,7 ms=! , u,= 0,37 ms™! , Re = 1440

8p 6 = 25 1,6, b1 -22¢

2.1.2. Couche Limite Isotherme

Les mesures concernant les fluctuations de vitesse ont &té principalement effectuées dans la
couche limite turbulente se dé&veloppant sous une plaque plane suspendue dans une veine d'expériences Sj
(0,8 x 0,8 x 4 m), & 45 cm en dessus du plancher (20). A la section oii les mesures ont Eté effectuées
(position du point P amont, voir paragraphe 2.4)., les conditions expérimentales S] sont les suivantes :
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Ue = 16 ms_1

5 8= 54mm, Uy = 0,59 ms—I’Re = 6120.
e
8" db wg,0106 .

112.8ue" dx

Le gradient longitudinal de pression statique est ndgligeable :

2.1.3. Couche Limite Sur Paroi Chauffée

Les mesures concernant les fluctuations de température ont &t& faites dans la couche limite
turbulente se développant sur la plaque plane chauffée constituant le plancher de la veine d'expériences
(14) d'une autre soufflerie S, (0,56 x 0,56 x 4,8m). Les caractéristiques expérimentales dans S, sont
les suivantes, 3 la section ou les mesures ont &té effectuées (position du point P _ amont,voir paragraphe
2.7). 5 o
1

b

u, = 12,2 ms—l, 3= 59 mm, u= 0,46 ms

Re =4750,e B0k
p e

_‘f’:f. ﬂz ~-4410-6 .
142 Puz dx

Le gradient longitudinal de pression est légérement négatif :

2.2, TECHNIQUE DE MESURE DESFLUCTUATIONS DE VITESSE ET DE TEMPERATURE

Les signaux relatifs aux fluctuations descomposantes u' et v' de la vitesse ont &té obtenus en
écoulement isotherme 3 1'aide d'anémométres & fils chauds fonctionnant & ré&sistante constante, avec
circuit de linéarisation. Ces fils, en platine rhodié (10%Z Rh), ont un diamétre d de SPJ leur longueur |
est de 1'ordre de lmm (1/d ~ 200).

La composante longitudinale u' est mesurde & 1'aide d'un £fil droit. Une sonde & fils croisés en X
permet d'isoler les composantes longitudinale u' et transversale v' instantanément. L'écartement choisi
entre les deux fils est de 0,4 mm, de telle sorte que l'influence d'un fil sur l'autre soit négligeable
sans que pour autant l'effet d 'intdgration spatiale soit critique (20),

Les fluctuations de temp@rature sont détect@es 3 l'aide d'un anémothermométre & fil "froid"
fonctionnant & intensit& comstante. Les fils utilisés sont en platine et ont un diamétre de I,L.Des
précautions nécessaires pour isoler les fluctuations de températures doivent &tre prises (21)." L'in-
tensité I est de 0,15 mA, ce qui correspond 2 un coefficient de surchauffe de 310~% et & un rapport de
sensibilité vitesse/température de l'ordre de 10-4 dans le cas le plus défavorable . Dans les conditions

expérimentales précitées, l'erreur relative due & la contamination de u' sur la variance 6% des fluc—
tuations de température est, dans le cas le plus dé&favorable, de 1l'ordre de 10 Une compensation

par circuit E&lectronique analogique de 1'inertie thermique des fils a &t& faite bien que la valeur de la
constante de temps soit faible (50M8 pour U= 5 ms~l, (15)). L'allongement 1/d a &t& choisi de
1'ordre de 600 afin que les effets de bouts jouent un role mineur, sans que pour autant 1l'intégration
spatiale soit critique.

2.3, UTILISATION DES FLUCTUATIONS INSTANTANEES

Afin de mettre en évidence les apports et les &jections au voisinage immédiat de la paroi des
enregistrements des fluctuations instantandesde la composante longitudinale u' de vitesse et de
température @'ont &té effectués. Pour privilégier les fluctuations de grandes amplitudes, tout en
conservant leur signe, les cubes instantands,u'3 et '3, des fluctuations u' et @' ont &té déterminés.
Ces fluctuations u' et 8' ont &té normées par rapport & leur &cart-type; ainsi, toutes les fluctuations
d'amplitude inférieure, en valeur absolue, & une fois l'écart type du signal relatif & u' ou 8' sont
trés atténuées; au contraire, toutes les fluctuations d'amplitude supérieure & cet Ecart—type sont
amplifiées.

Dans le cas d'expérience en conduit cylindrique (Cf 2.1.1.),ces cubes ont &té obtenus au cal-
culateur & partir de 1l'acquisition numérique des signaux relatifs soit a u' soit & &' (Cf figure 3).
La fréquence d'échantillonage des signaux est de 12 KHZ; cette fréquence est suffisante vue 1'Etendue
spectrale des variables (15).

Une méthode analogique a &té utilis@e (22) dans le cas d'expérience relatif & la couche limite
isotherme. Les enregistrements des cubes instantanés u'3 ont permis de déterminer le nombre

d'apports et d'éjections i travers la couche limite (Cf. figure 4). Avec le critére de seuil adopté,
seuls les signaux d'amplitude supérieure i 1'écart type sont pris en compte.

2.4. CORRELATIONS SPATIOTEMPORELLES EN DEUX POINTS

Ces mesures ont &té effectu@es dans les couches limites précitées (Cf 2.1.2. et 2.1.3.). Le
point Po situé en amont est fixe et le point situé en aval peut se déplacer, soit perpendiculairement
d la paroi (point P figure lb soit latéralement (point Py ou P2 figure 2).
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Fig. 1 Mesures spatiotemporelles en deux points Po,P.

L'écart longitudinal X| entre Po et P' (voir figure ! ou 2) est quelque peu supérieur &
1'épaisseur & (X = 1,419, cas d'expérience en couche limite isotherme, figure 1; X, = 1,865,
cas d'expérience en couche limite sur paroi chauffde, figure 2) afin de privilégier les structures
3 grande échelle,porteuses d'énergie cinétique, qui jouent un rSle fondamental dans les &coulements
cisaillés.

D'autre part, pour donner de 1'importance aux fluctuations de forte amplitude les corrélations
triples ont &té souvent utilisées. Elles ont de plus l'avantage de donmmer le signe des fluctuationms
dominantes. En fait ce sont les coefficients de corrdlations qui ont &té mesurds : soit les
coefficients de corrélation double

%6 = 050 O e+ o)/ (B2 B2)V2

=i R 2
gy = Up(Ow(e+D) /(U v*)
soit les coefficients de corrélation trinmle
T AN A2
Wo () W(er D /(07 (WE-W)*)

Fus uv = uip(B)(W V(e T)/(UgF (Uv/= u¥) )"

oo, vv = Gote) viECe+8) (U2 (ve —ve)yr) '

Ces mesures ont été effectudes avec un correlateur P.A.R. (20, 23)

L'étude (20), en particulier, des signes des corrélations triples précitées ainsi que celle de
leur valeur absolue,permet de mettre en &vidence quel est le "mode" de turbulence qui prédomine,
apport ou &jection.

2,5, CORRELATIONS SPATIOTEMPORELLES CONDITIONNELLES EN DEUX POINTS

Afin de mettre en &vidence de fagon plus directe les apports et les Ejections, nous avons introduit
des corrélations spatiotemporelles conditionnelles (10 a et b, 23) la condition portant sur le signe
des fluctuations. Par exemple, en ce qui concerne les fluctuations de température e', si O%ocela
correspond 4 de 1'air chaud en provenance de régions plus proches de la paroi, sil4¢0cela correspond &
de 1'air froid en provenance de régions plus éloignéesde la paroi.

Les corrélations spatiotemporelles conditionnelles sont définies par :

Rn,n () = T(e) B} () O'(e+T)/( B &5

!
oll m et n sont des' signes, +ou-, relatifs ieo(t) ete(h-l-'C).Pour un couple choisi de signes m et n,
J) =1 lorsque @o(k) a le signe m et e'( E¥C) le signe n; dans les trois autres cas J(E) = 0.

Ces corrélations conditionnelles ne sont pas des coefficientsde corrélation, mais chacune représente
la contribution d'un couple de fluctuations de signes donnés au coefficient de corrélation total :
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, Notons que cette méthode a aussi &t& appliquée & la correlation u',v' , généralisant ainsi aux
correlations spatiotemporel-es la décomposition utilisde par Willmarth (3) pour les temsions de Reynolds.

La détermination des corrélations conditionnelles a &té effectude & 1'aide d'un systéme d'acquisi-
tion et de traitement numérique de 1'I.M.S.T.. L'acquisition des donndes a &té& faite sur deux voies
par couples de valeurs correspondant aux fluctuations en Po et P, Ce temps, indépendant de la cadence
d'8chantillonnage qui sépare les deux valeurs,est négligeable. En ce qui concerne la cadence d'échan-
tillonnage, on a vérifié& que la corrélation mesurde est correcte quelle que soit cette cadence, & con—
dition que le nombre d'é&chantillons soit suffisant et que le temps d'intégration correspondant soit
trés grand par rapport aux &chelles de temps du phénoméne considéré (25). L'augmentation de la fréquence
d'échantillonnage permet simplement une ré&solution incrémentale plus fine, mais il est alors nécessaire
d'augmenter le nombre d'&chantillons pour avoir un temps d'intégration suffisant. La cadence adoptée
est de 2000 Hz ce qui correspond & un temps incrémental de 0,5 10-3s , adapté& aux conditions expérimen-
tales. Le nombre de couples généralement traités est de 60 000, correspondant & un temps d'intdgration
de 30 secondes.

Des tests du programme de calcul numérique du coefficient de corrélation et des corrélations
conditionnelles ont &té effectués., Il semble que,principalement pour les décalages de temps faibles, la
méthode numérique soit plus fiable et précise que la méthode utilisant le corrélateur P.A.R.

Les mesures ont &té& effectudes soit en couche limite sur paroi chauffée, soit en couche limite

isotherme, les points Po et P % P'&tant 3 la méme distance de la paroi, pratiquement sur une ligne
P p q g

de courant.

2.6, PROBABILITES SPATIOTEMPORELLES CONDITIONNELLES EN DEUX POINTS

Les corrélations conditionnelles pré&cédemment introduitesne fournissent pas en fait un critére
absolu de liaison statistique.

Certaines propriétés de la turbulence &tant liées & des caractdres non gaussiens, la ndcéssité
de déterminer un tel critd@re nous a conduit & utiliser les probabilité@s conditionnelles spatiotempo-

relles (11). Ces probabilités sont ici relatives aux fluctuations de température. On considére les
probabilités simples et composées telles que, par exemple :

Bob[ €®)IG>he) ; Trob [ 80 a>h]
Peob [ Bl0)/0>h, et O(erD)IT>h ]

(Tc‘,et(rsont les &carts types des fluctuations &etel; ho etk sont des seuils quelconques.

Pour caractériser le degré de liaison statistique entre les fluctuations nous introduisons la
contingence(f. Par exemple :

P™*= Rob[8()/0% >hg at 81es0)fo>h] - Frob [ 80h] Frob [ 8566))0; >

Les signes + rappellent, dans 1'exemple donné, que l'on ne consid&re que les s&quences de fluide
dont la temperature est plus €levée que la température moyenne aux p01ntS Po et P, Si les &venements
e ((:) >h(S; ete(b+"t)>h0' sont statistiquement indépendants, LP'H'—O ; s'ils sont compl&tement 1ids, on

Q1 Rob [0309/ahe] [ 4 — Frob[ 8erfor>h]]

On introduit alors une contingence réduite,qui s'écrit ,en utilisant la probabilité& conditionnelle :

S O Peob[ 016+1)/0>h s 8300 )00>h,] - Brob [ 615)/0°>h)
AN A - Prob[ e'(e)/o-'>|n]

Ainsi 1'indé&pendance statlsthue est equlvalente a = o et la liaison complé&te entraine §r= 1.
Si les &vEnements sont plus ou moins 1ncompat1b1es * ont des valeurs négatives. Des considéra-
tions similaires s'appliquent aux contlngencesL? et atlves aux séquences de fluide plus froid que

les températures moyennes en Po et P .

Différents seuils ont &té utilis&s : h = ho = o, oii 1'on consid&re toutes les séquences oli le
fluide est chaud ou toutes celles oii le fluide est froid,et h = ho = 1, correspondant au fluide tré&s
chaud ou bien tré&s froid.

Les contingences conditionnelles spatiotemporelles ont ét& déterminées avec des méthodes numé-
riques analogues et pour les mémes conditions exp&rimentales,que les corrélations conditionnélles
spatiotemporelles.
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2.7. CORRELATIONS SPATIOTEMPORELLES EN TROIS POINTS

Afin de mettre en &vidence le caractdre tridimensionnel des structures turbulentes & grande échelle
des mesures de corrélations spatiotemporelles en envergure ont été effectudes dans la couche limite tur-
bulente sur paroi chauffée. Pour atteindre la largeur statistique du domaine de cohérence de ces
structures, des mesures de corrélations spatiotemporelles des fluctuations de température en trois points
ont 8td faites (10 a et b).

PAROI

Fig. 2. Mesures spatiotemporelles en trois points Po’Pl’PZ‘

Py, P| et P2 sont situds dans un plan parall®le & la la paroi (figure 2). La distance X] séparant le
point Po, situé en amont, du point P', en aval, est de 1,86& (C£. 2-4); les deux points Pl et P2, en
aval, peuvent étre déplacds symétriquement par rapport i P,P'. Dans ces conditioms, on définit un

coeffi%}ent de corrélation triple entre les fluctuations de température en Po, Pl et P2, avec un temps
retard € entre Po et P1P2 :

réom@f B, (k) O, (k) Glere) 7 [ 02 (8,0,- OLe )" ]w_

8i, pour un temps retard T, ce coefficient a une valeur importante ceci signifie que statistique-
ment des structures, qul sont passées 2 des instants £ en Po, atteignent simultanément les points P| et
P2 3 des instants correspondants b 4%. En d'autres termes, 1'envergure statistique du domaine de
cohérence est au moins de 1l'ordre de la distance P|P2 , En faisant varier la distance PiP2, c'est &
dire X3, on obtient la carte des isocoéfficients de corrélation triple en fonction deTet X3
(Cf. figure 11),

Une interprétation similaire des corrdlations spatiotemporelles doubles, par exemple entre Pg
et Py,n'est pas possible. En effet, on ne peut pas distinguer alors une structure de petite envergure
ayant un parcourt trds aldatoire d'une structure cohrente de grande envergure. L'aire délimitée par
1a'ligne oti la corrélation spatiotemporelle double, Tg,@, ou Yeg,©, s 'annule,correspond au domaine
d'influence qui est &videmment plus large que le domaine de cohérence.

La considération des signes de Fgog, @, » Veora ou .02 - ¥e: 8, permet de montrer
(CE£. 10 a) qu'il existe trois régions (voir figure 16). Dans la régions I, le mode de turbulence
statistiquement dominant correspond & la combinaison de signe ( 8o >0, @370 ©,70). Il peut Etre
interprété comme &tant dd 4 de Ll'air chaud passant en Po et transféré em aval’d la fois en P| et P2,
Les régions II et III correspondent respectivement aux combinaisons de signes ( Qb L0, 0, <o, ©; <o)
et ( BL>0 ) 6'4 9}_(0); les modes dominants qui y régnent peuvent &tre interprétés comme des apports
d'air froid.

Les mesures ont &té effectudes au corrélateur P.A.R. (23).

3 ., ANALYSE DES RESULTATS EXPERIMENTAUX

3.1. ZONES INTERNES

3.1.1.Des enregistrements des fluctuations de vitesse u' et de température ©' ont &té effectués
jusqu'i une distance de la paroi y*+ = 1,7 dans 1'&coulement en conduite cylindrique. La figure 3
donne les cubes normalisés correspondants u'3/(E1)3u et 6'3/( BD.)}/& ; ceux—ci mettent en relief

les signaux de forte amplitude qui sont déterminants dans le mécanisme non-lin&airede la turbulence.
Les ordonnées donnent les pourcentages des fluctuations rapportées aux moyennes u et B locales.

On constate qu'a la distance y+ = 1,7 seuls des apports de fluide plus froid, en provenance de zones

un peu plus &loignées de la paroi,sont d&tectdes. Les &jections de fluide plus chaud n'apparaissent que
peu 3 peu, 3 mesure que 1'on s'éloigne de la paroi. La figure 4 donne précisement des résultats

obtenus dans une couche limite turbulente; ceux-ci concernent la fréquence d'apport Na et la fréquence
d'éjection Ne obtenues & partir des cubes u'3/( _\F)
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On vérifie bien que, prés de la paroi, seuls les apports subsistent. Un point de mesure de
Na & y+ = 1,7, obtenu dans la conduite cylindrique, est &galement porté. Pour que la comparaison soit
valable 1la formule de Rao donnée plus loin a &té utilisée pour ramener Na aux conditions de la couche
limite Sy. Il s aglt surtout, semble-t-il, d'apports de couches tré&s voisines par amincissements locaux
de la sous—couche visqueuse ; par exemple, a yt =1,7, 1'apport correspondrait & du fluide venant en
moyenne d'une zone situde & y*=5 seulement. Par ailleurs cette figure confirme que la fréquence N,
d'éjections augmente lorsqu'on s'&loigne de la paroi, N, &tant égale & N & environ y* = 50, au début
de la zone turbulente inertielle.

En ce qui concerne les valeurs de N, et N il faut les comparer, par exemple, au nombre de
bouffées de turbulence ou "bursts" qui serait donné par la formule de Rao (7) : Ng = 1,54 Re=0,73 soit
ﬁg 0,0026. Cette valeur correspond pratiquement & la fréquence N, maximum d' éjections entre y* = 50
e% 100 env1ron, dans la zone de maximum des contraintes tangentlelles de Reynolds (on définit

N»/u )

| 1

oL 10 1 Lod 1t 1aal i Lol ] I O Y

100 10! 102 103
y <+

Fig. 5. Facteursde dissymétrie S, et d'aplatissement Fy relatifs 3 u'.
Conduit cylindrique.

Les mesures des facteurs de dissymétrie Sy et Sg relatifs au conduit cylindrique sont présentées
sur le figures 5 et 6. Elles confirment les r&sultats précités, en ce qui concerne la prédominance des

survitesses et des refroidissements de grandes amplitudes sur les sousvitesses et les réchauffements prés

de la paroi. Lesfacteurs d'aplatissement Fy et Fe dépassent de beaucoup la valeur gaussienne, F = 3,
trés prés de la paroi, ce qui indique un caractére intermittent de 1'&coulement, Remarquons, par a111eurs
qu'aussi bien pour la vitesse u' que pour la température 8', Fy et Fe passent par des valeurs minimales
aux alentours de y*av 20 (valeur pour 1aque11e Su et Se sont nuls). Ceci pourrait &tre dii (26) aux
instabilités de type hydrodynamique, dont 1l'hypoth&se est souvent avanc@e dans cette zone, et qui
donnerait lieu & des trains d'ondes harmoniques (§ = 0 ,F = 1,5).

A partir des mesures d'autocorrélation r(t)de u' et de 0! on a déterminé la fréquence intégrale
-4
oy j'?’or('c) d't:]
()

%€ est un temps toujours relativement grand correspondant 3 la partie positive de (T .Nf, est liée,
avec 1'hypothé&se de Taylor,d 1'échelle intégrale classique L :

Lo %
2TN,
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valeur Ng'= 0,0076 calculde 3 partir de la formule de Rao précitée,dans 1'écoulement considéré. Ceci
montre que les &chelles intégrales Ly et Lg sont plus grandes que celles correspondant aux distances
moyennes entre les bouffées. Echelle spatiale entre les bouffées correspondrait plutdt & celle du
maximum de contraintes de Reynolds qui est comprise entre la macroéchelle et la microchelle de
Taylor, comme on peut s'en rendre compte en analysant les cospectres de WV’ (14,27).

Sur la figure 7 on a porté les fréquences adimentionnelles N? =+—=— FElles sont inférieures & la

3.1.2. En ce qui concerne la liaison entre les apports et les éjections,des mesures de corrélation
spatiotemporelles conditionnelles tendraient & confirmer qu'elle existe,du point de vue statistique,
au moins dans certaines zones,comme on va le voir sur la figure 8 donnant le coefficient de corrflation

ree) = eo'(o 9’(t+'t:)/(§i gz

ainsi que les différentes contributions selon les signes des fluctuations @'. 1La ligne PoP, paralléle
i la paroi, située 3 y§ = 22,est pratiquement une lignede courant moyenme. Enabscisse le temps adimen—
51onneltﬂﬁfu¢$est porté. tjkcorrespond au maximum de la corr@lation et ¢¥correspond au temps de par-
cours de la distance X{ & la vitesse moyenne locale, soit 't“t—)(418. On constate que 3

R- -

02 ’2: Q%Qck’""'t-:-.-_-;..___ =

f———""REs

N
- 5 2
0 l_ T 0=
ATE 24 T

Fig. 8. Corrélations spatiotemporelles de température 6': r coefficient; R++,
R--, R+-, R-+ corrélations conditionmelles.
Couche limite S, : yo+ = 22, Evue = 0,49, X1 = 1,86%
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comme il &tait attendu, les sdquences d'apports R-— (fluide froid) ont une c&lérité

plus forte que la vitesse moyemne ; mais il est plus surprenant de constater que les s&quences d'&jec-
tions R++ (fluide chaud) ont aussi une c&lérit@ qui est plus grande que la vitesse moyenne. D'ailleurs
on voit aussi que le temps T* ¢ :’, c'est 8 dire que les fluctuations les plus cohérentes vont plus
vite que la vitesse moyenne.

Finalement,dans cette région, il semble qu'il existe des s8quences correspondant vraisemblablement
aux bouffées de turbulence oli les apports et les &jéctions sont 1i&s. Ce résultat semble &tre sp&cifique
i cette région, car des mesures similaires de l"eoe montrent que les temps correspondant aux &jections
deviennent supérieurs’d ’thour y'?lOO (12).

Remarquons encore que la période moyenne du ph&noméne de "bursting" serait (7) %_Lq_z 53

soit & la distance considérée iciA’t‘*= 2,4, ce qui correspond en ordre de grandeur 3 la durée pendant
laquelle la corrédlation de .9 @ une valeur notable , comme on peut le voir sur la figure 8 od 1'&cart
AY* a &té porté. Toutefois, ceci ne signifie pas du tout que le temps de cohérence des bouffées de
turbulence soit adgal aATY 2,4, car il s'agit 13, en raisomnant par analogie avec les corrélations en
trois points comparées d celles en deux points(Cf para 2.7)d'un temps "d'influence" et non pas de"cohérence",qui

peut lui 8tre trésnettement inférieur (voir par exemple Fig.l165: envergures des corr@lations double
et triple).
a2 | | | I
-t
- D S L Y . |#m"::::=:
- R-- R++ —
- A-L-*: 34
O O—o-clJ o—O=
o~
/
— —
R+
©-©=5=008-g~
Re=~ ~ °o~00s353 8o~
_02 L | Y} |
0 1 2 Tk T3 4

Fig. 9. Corrélations spatiotemporelles de vitesses u'p, v' :

fricoefficient; R+~, R—+, R++, R-—;corrélations
conditionnelles. Couche limite §; : y§ = 117,
u/ue = 0,62 , X; = 2,78 § .

~

Des constatations analogues peuvent &tre faites i partir de la figure 9 donnant le codfficient
de corrélation dans le temps

X ’ 4 \'4 Ve
Fagy = Whte) VVCEx®) / (WE VF)
Ces corrélations conditionnelles sont notées {Cf. para 2.5) R+~ etec ... signifiant pour 1'exemple choisi

que u'y (&) el v'(E+7%T)Lo.Les apports correspondent donc 3 R+~ et les éjéctions 3 R-+. On constate
que méme & cette distance de la paroi les séquences d'éjection ont statistiquement un temps optimum
(minimum de R-+) pratiquement &gal au temps e compensateur du mouvement moyen, ce qui signifie que l'on
a encore un effet d'entrainement des &jections par des apports.

Le temps AT 3,1,correspondant & la périodicité moyenne des bouffées,a Eté &galement porté sur
la figure 9. On peut faire les mémes commentaires que pour la figure 8.

3.1.;. On a aussi effectué une expérience significative du transport des perturbations 3 1l'aide des
corrélations spatiotemporelles de température, le point en amont Py &tant placé i Yg’= 23 et le point
en aval P &tant déplacé longitudinalement et perpendiculairement i la paroi (Fig. 1). En particulier

les lignes de corrélations spatiotemporelles I’é G(X,}y"t) maximales, ¢.3.d. pour la distance yp et
o
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le temps t;optimaux qui donnent la corrélationmaximale & un X, fixé, ainsi que les lignes de contingences
maximales définies de fagon analogue,sont & priori significatives de la diffusion des perturbationms,

100

y-l—

X1/O

Fig. 10. Couche limite Sy : y*= 23, Coefficients de correlations et contingences
rdduites spatiotemporelles.,

® (To,p) 0P (h=ho=o) , x G (hshy=0)
Aéﬁ('ﬁ:v’\o:«?'“, o B (heho =), ?

—~ = — Ejections,visualisation Rundstadler etal.(35).
Trajectoire moyenne,Shlien et Corrsin (28)

Sur la Figure 10 on a porté le coefficient de corrélation maximal(rboe)“\et les contingences

réduites maximales Gm pour différents seuils h (Cf. para 2.6.), A titre de comparaison on a &galement
porté la ligne "ejected eddies" tracée & partir des visualisations par Kline et al. (5), ainsi que la
trajectoire moyenne des particules qui auraient &t& &mises & la paroi, obtenue par Shlien et Corrsin (28)
en utilisant une source thermique comme &metteur de contaminant. Cette dernidre ligne est aussi la
trajectoire moyenne en y au sens lagrangien (28). On constate que les particules fluides tr&s chaudes
e re S e ; . z : 7 -
(@ (h:koaﬁ))s &cartent plus rapidement de la paroi que les particules tré&s froides (§5 (l’\:ho-/l) ).
Ceci, toutefois, n'infirme pas un couplage possible entre les &jections et les apports, car,le phénoméne
8tant tridimensionnel,un apport peut "encadrer" une &jection, comme par exemple dans le modéle donnd par
Blackwelder (2) et qui sera repris 4 propos des corrélations en trois points (Para. 3.3.), les noyaux
des apports et des &jections se déplagant sur des lignes différentes. Sauf pr&s de l'origine corres-
pondant 3 la diffusion initiale, les lignes sont trds peu inclinBes. A titre indicatif, la pente de la
courbe ( rtbe),n pour X]/é%g = 1 est de l'ordre de 3°, la pente des diverses lignes tendant vraisem—
blablement vers celles des lignes de courant moyennes considérées, les perturbations étant finalement
emportées avec le courant moyen.

3.1.4. La cohérence en envergure des &jections et des apports a &té &tudide &
spatiotemporelles en trois points des fluctuations de température comme il a &
2.7.

: I1 e
partir des correlations
8

té expliqué au paragraphe

Un exemple de r@sultats est présenté sur la figure 11 relatif i la position )€*== 64 (Cf.Fig.2).
Il existe essentiellement deux zones de coefficients de corrélation I19°e‘egrespectivement positifs
et négatifs, que 1'on peut rattacher aux séquences d'éjections et d'apports. Si l'on considére
1'échelle X3/ 8 on voit que du point de vue statistique les &jections sont relativement minces;
1'épaisseur au droit du maximum de 80 9,9, positif est de l'ordre de 0.078. Un autre fait important
c'est que les &jections apparaissent &tre encadrées lat&ralement par les apports, le systéme &tant
fortement tridimensionnel. On peut d'ailleurs, compte tenu des ré&sultats du paragraphe 3.1.1, penser
que plus prés de la paroi les zones d'éjcctions s'amincissent, les zones d'apports prenant de plus en
plus d'importance. Cette disposition en envergure des &jections et des apports est en faveur du schéma
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Fig. 11. Coefficients de corrflations spatiotemporelles en trois points. Couche limite S,
yé = 64, TW/ue = 0,59, X, = 1,866

précité donné par Blackwelder au voisinage imm&diat de la paroi. Notons que l'envergure mesurée entre
deux dorsales des coefficients Iy g6 négatifs'correspondant aux apports,est de 1'ordre de X3 gz asop
0 2 “*
50»
L)

; cette différence

alors que la distance correspondante,dans le mod&le de Blackwelder,est de

correspond 3 un grossissement tout & fait plausile depusy* & 10 jusqu'd y+ = 64,

3.2 ZONES EXTERNES

Si l'on admet que la génération de turbulence par bouffées a lieu dans la zone interne, il
s'agit surtout dans la zone externe d'@tudier les liaisons statistiques qui peuvent exister avec ces
bouffées. Nous n'envisageons que le cas de la couche limite. Le cas du conduit est assez différent,
car il existe un effet de la paroi opposée (Cf. Sabot et Comte-Bellot (30)),

3.2.]1. Du point de vue diffusion, la figure 12 donne 1l'é@volution des courbes d'isocontingences

@""" (h= h°=4), relatives 3 des séquences de fluide trés chaud, égales 3 la moitié de la contin-
gence maximale **(hw4) avec méme temps retard optimal. Les conditions expérimentales sont les
mémes que pour la figure 10, (¥P=TWe/S).

Qs - -
' l— " intermittence ' ‘ '

CE R P o o2

025

Y/

00

+
Fig. 12. Isocontingences §H’(h=ho=]) = &v:[&
_*_Jigne de contingences maximales

Couche limite Sz/.yﬂ,‘ = 23.
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Toutefois,le point en amont P, ne peut pas &tre considéré comme un point
source puisque des particules fluides passant pré&s du point en aval P peuvent ne provenir que-du
voisinage de Pp ol les fluctuations de température sont fortement corrélées avec celles en Po. Aussi
nous avons défini une région source initiale, notée e= O+ &, en prenant les points expérimentaux
d'isocontingenceségales 3 la moitié d'une valeur limite de la contingence maximalz,définie par extra-
polation selon une loi exponentielle, ne prenant donc pas en compte la viscositd, pour y ——»0(12).
On voit que cette région source est en accord de forme avec les autres regions pour des temps différents
de zéro. Le point source i la paroi est virtuel,d une distance en amont que l'on a &valué (12) avec
une formule de trajectoire lagrangienne donnée par Batchelor (29) i Xja1,3 5.

Si 1'on excepte les instants initiaux, 1l apparait que les &jections sont diffusées 3 travers
la couche limite d'une fagon qui n'attire pas de remarques trés particuliéres; notamment 1'hypothdse
de similitude de Batchelor (29) pour la diffusion dans cette zone parait 8tre vérifie en premiére
approximation. On obtient une &volution analogue des isocontingences pour les apports, mais la diffusion
est moins inclin&e par rapport 3 la paroi comme on le constate sur la figure 10 pour les contingences

maximales é;:(h:-. ho=4a).

3.2.2. 11 existe aussi une liaison statistique & travers la couche limite qui n'est pas due & un
transport mais 3 une liaison structurelle,analogue dans le cas des ondes i celle degplans de phase,

qui est bien mise en &vidence par les correlations spatiotemporelles des composantes de la vitesse
(Fig. 1). En fait le décalage longitudinal X| n'est pas indispensable; son introduction a pour effet
de privildgier les structures fortement cchérentes. De plus on a intérét a considérer les corrélations

triples, significatives des fluctuations de fortes amplitudes (Cf. para 2.4)

p/4S

Fig. 13. Isocoefficients de corrélations spatiotemporelles l‘uo wu *+ QO points de retard optimal.
Couche limite ) : y = 0,0568 , X, = 1,418 '

Les figures 13, 14 a et b donnent respectivement les isocoefficients de correlations spatio-
temporelles triples en deux points (Fig. 1):

r . : * .
e, 0u wu WV et Iy en fonction. desvariables ‘U, et y/ & . Le point
el a, Y us,vwv . O ‘e
en amont Po est situd & yo = 0.0568, soit y§ = 119,23 la limite de la zone interne.

Les lignes en traits tiretés correspondent aux corrélations maximalesa§= o, lieu des points de
retard optimal. e
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p/4S

&1

Fig. 4. Isocoeff:}c%ents de corrélations spatiotemporelles : a ’GOMV » b, mo)vv
Couche limite $§ : y, = 0,0568 , X; = 1,418 .

Les isocorrélations ont sur chaque figure deux lobes marqués de signes oppos&s. On peut vérifier
sur les trois figures que les lobes les plus dévéloppés et cohérents correspondent i la combinaison
(u',{o‘u'(oj‘\"id;les autres lobes correspondent d& la combinaison (Ug»0 W50 y%). Ainsi c'est le mode
d'éjections qui est le phénoméne marquant; la pente du pseudo-plan de ‘phasé correspondant aux lignes
de corrélations maximales précitées,est de l'ordre de 18° d'aprés Fys, wy,de 20° d'aprés Mo, Uy °
cette derniére valeur &tant la plus significative, puisque liée aux tensions u ' Vv'% !

Les visualisations effectuées, en particulier & 1'IMST (31), montrent que les grandes structures,
issues de la zone interne,qui forment le plus souvent 1'intermittence, ont un angle en moyenne plus
elevé de l'ordre de 30°,certaines &tant méme presque 3 90°, Toutefois les structures facilement iden-
tifiables sont celles qui sont relativement figées et pas nécessairement tr&s actives; dec plus les
corr@lations prennent aussi en compte des structures en voie de disparition, probablement plus couchdes
au long du mouvement et qui,elles aussi,sont peu visibles.

Les lobes correspondant aux apports apparaissent beaucoup plus allongés au long de 1'@coulement,
ce qui est en accord avec les schémas actuels (1,2).

Dans une deuxiémes série d'expériences (9,20) le point en amont Po &tait situé dans la zone
d'intermittence (yo = 0,80 & intermittence 50%, X| = 1.438). Les figures 15 a, b, c donnent respective-
ment les isocoefficients de corrélations Tug,uw » Tua, uv et Mg, yy en fonction des var.:iables
y/§ et "C‘:_". Lorsque le point P est rapproché de la paroi, le temps compensateur Te diminue du fait
de la vitesse moins elevée régnant dans cette région (voir & ce propos les temps T ,introduits par
Favre et al.(32)et(33), dans le cas ol X{ = 0)

Sur ces figures seuls les lobes correspondant aux ralentissements de vitesse ( Wjp <o, Uf(O,V'>o)
sont bien d&finis; il s'agit pour 1'edsentiel du fait que les protubdrancesd'intermittence ont une
vitesse u' en moyenne plus faibles que dans la zone non-turbulente. Toutefois le fait que v' soit
positif indique une liaison avec des phases d'@jections.

La pente de la ligne de corrélation maximale de )"uo'uv (Fig 15b traits tiretés) est dans sa
partie linéaire de 1'ordre de 21°,tout comme dans le cas Gu P, &tait disposé a4 la limite
de la zone interne. Ceci serait done plutdt en faveur d'une liaison des protubérances de 1'intermit-
tence avec les &jections dans la zone interne pleinement turbulente. Notons ccpendant que les vi-
sualisations précitées montrent plutdt que les bouffées de fluide arrachées depuis la zone de paroi
(y+a)20) ne gagnent pas directement la zonme d'intermittence, mais seulement la zone centrale pleine-
ment turbulente. Par la suite la diffusion emm&ne ces bouffées dans la zone d'intermittence.



2-17

T

Fig .15. Isocoefficients de corrélations spatiotemporelles
a: Y b N c:
797 B Ug, Uy [P} v
Q points de retard optimal o,V
Couche limite Sj : Yo = 0,808 , X1 =1,438 .

3.2.3. En ce qui concerne le développement en envergure des perturbations,la figure 16 donne une
comparaison des diverses zones definies dans un plan parallile & la paroi selon les signes des
corrélations doubles et en trois points (paragraphe 2.7). La figure 16a correspond & la figure 11,
soit yo = 0.0348 ou y§ = 64.

Les figures 16b et c sont relatives 3 des plans respectivement situés & yo = 0.34 9 et y, = 0.818
(intermittence 45%Z). Les zones hachurées sont celles ol le coefficient de corrélation spatiotemporelle
en trois points Vg_g, 0 ©st positif, correspondant 3 des séquences de fluide chaud. On voit que
1'envergure des &jections augmente au fur et 3 mesutre que 1l'on s'@loigne de la paroi. A la position
y = 0.818; 1'envergure de la zone hachurde au droit du maximum de corrélation estégale & 0.88, ce qui

-~

est pratiquement 1'envergure moyenne d'unme protubérance d'intermittence & cette distance y/$ (10b).

Ceci montre clairement que les protubdrancesde turbulence sontformées surtout par du fluide en prove—
nance de zones plus intérieures; les visualisations montrent,d'ailleurs, que 1'entrainement de fluide
extérieur non-turbulent est trds faible dans le cas de la couche limite avec gradient longitudinal de
pression moyenne nul (31). Mais &tant donné que du fluide arrive de l'intdrieur dans une protubérance
de turbulence , il est nécessaire,d'aprés ce qui préc@de, que du fluide reparte en quantitd au moin
égale vers 1'intérieur. Ceci n'apparait pas dans la figure 16c, car dans la région ] les valeurs
positives de f‘eem ©, signifient seulement que les &jections sont dominantes (10a, 20), du point de

vue cohérence, mais non pas qu'il n'existe & certains instants des apports moins cohérents donnant
lieu & des produits O 8] eL £ 0.

Ld . . .
¥ 12 détransition est pratiquement exclue.
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(c) y/§ = 0,814,

Une autreconstatation quel on peut faire sur la figure 16 est 1'aspect fortement tridimensionnel
des &jections, ce qui est aussi en accord,dans la zone d'intermittence,avec les résultats de

Kovasznay et al.

(34).

Enfln,sl la figure 16 révéle une unité de mécanisme dans le processus d’ eJectlon depuis la zone
interne jusqu'id la zone d'intermittence, ceci ne signifie pas toutefois qu'une méme éjection parcourt

directement le trajet 3 t

au paragraphe précédent.

ravers toute l'8paisseur de couche limite, comme nous 1'avons d&ja souligné
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4. CONCLUSIONS.

De 1'analyse des zones interne et externe qui a &té faite se dégage un certain nombre de résul-
tats, dont les plus marquants sont les suivants @

4.1, Trés prés de la paroi, au moins juqu'd y t = 1,7, les enregistrements des fluctuations de tempéra-
ture et de la vitesse longitudinale, ainsi que les facteurs de dissymétrie correspondants, montrent que
les apports constituent le phénomé@ne dominant. Evidemment, du fait de la conservation du débit de masse,
il existe nécessairement des €jections, mais celles—ci n'apparaissent pas dans ces mesures parce que,
probablement, elles sont plus diffuses, de faibles amplitudes relatives.

Au fur et 3 mesure que l'on s'@loigne de la paroi, le nombre d'8jections apparentes augmente
tandis que celui des apports diminue ; dans la zone, 50& y* & 100, ces nombres sont pratiquement
8gaux, 3 la précision prés des mesures, et voisins du nombre de "bursts" donné, par exemple, par la
formule de Rao, Par ailleurs, si l'on se référe aux célérités, mesurées 3 partir des corrélations spa-
tiotemporelles conditionnelles, les &jections semblent —du moins pour les plus cohérentes— &tre liées
aux apports. Enfin, les mesures de corrélations spatiotemporelles en trois points montrent que, dans
une section paralléle & la paroi, les &jections occupent un domaine, relativement mince, entouré& par
des apports formant, en quelque sorte, les deux doigts d'une main. Ces résultats sont en faveur des
schémas tridimensionnels, tels qu'on peut les trouver dans les publications de Praturi-Brodkey, ainsi que de
Blackwelder, dans lesquels les bouffées de turbulence ("bursts") sont créées, dans la zone interne, par
1'interaction d'é&jections ("éjections") et d'apports ("sweep").

4.2, En ce qui concerne le transport des perturbations les plus cohérentes depuis la zone voisine de la
paroi, jusque dans la zone, K pleinement turbulente -mesurée par les probabilités spatiotemporelles con-
ditionnelles & partir de y = 23— il se fait par un processus analogue & la diffusion lagrangienne de
particules., Les perturbations liées aux &€jections s'@loignent plus de la paroi que celles lides aux
apports ¢ si 1'on admet qu'au départ les deux perturbations sont liées, ceci signifie que la bouffée

se déforme en s'estompant au cours du. temps.

4.3, Il existe aussi -comme le montre les corrélations spatiotemporelles de vitesse en deux points, &
travers la couche limite- une liaison statistique qui n'est pas due 3 un transport mais plutSt & une
liaison structurelle analogue & celles des plans de phase dans le cas des ondes. Toutefois, de telles
liaisons entre les zones interne et intermittente n'ont pas &té décelées, Des visualisations effec-
tuées montrent d'ailleurs que 1'éclat d'une bouffée, issue de la zone de paroi, ne s'étend pas, en
général, au deld de la zone interne pleinement turbulente ; cependant cet &clat est diffusé@ et peut
gagner; comme Vu précédemment, une protub&rance turbulente de la couche limite.

Dans la zone externe, ce sont les &jections qui semblent jouer ~comme le montrent notamment les
corrélations spatiotemporelles en deux et trois points— un rSle de plus en plus dominant lorsque 1'on
s'éloigne de la paroi, les apports &tant de moins en moins cohérents. En envergure, le domaine de
cohérence des &jections s'é@largit progressivement allant jusqu'd intéresser, du point de vue statistique,
les protubérances turbulentes. Il existe donc une unicité@ du processus qui se traduit par une prédomi-
nence des &jections, en tant que structure cohérente ; toutefois, cela ne signifie pas du tout que ces
éjections sont dues & un méme tourbillon intéressant & la fois, par exemple, la zone interne pleinement
turbulente et intermittente.
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EXPERIMENTAL, STUDY OF COHERENT STRUCTURES
IN THE TURBULENT BOUNDARY LAYER OF PIPE FLOW
USING LASER-DOPPLER ANEMOMETRY

H.R.E. van Maanen
KONINKLIJKE/SHELL-LABORATORIUM, AMSTERDAM
(Shell Research B.V.)
P.0. Box 3003, 1003 AA Amsterdam, The Netherlands

SUMMARY

The main objective in this investigation has been the study of the coherent structures in the
turbulent boundary layer of a pipe flow. These structures - often called bursts - are thought to be the
main mechanism involved in the generation and maintenance of turbulence in flow.

For the purpose of the study we measured the frequency and frequency spread as a function of
Reynolds number and tried to resolve the structure of the phenomenon by measuring conditional averages.

The measurements were carried out in a pipe 6 m long and 50 mm in internal diameter, filled
with water, using a laser-Doppler velocimeter, down to 0.25 mm from the wall, with the size of the
measuring volume in radial direction being 0.1 mm.,

The output signal of the laser-Doppler anemometer, which can be regarded as the flow valocity,
was fed both into a burst detector as described by Blackwelder and Kaplan and into an electronic delay
line. The output signal of the burst detector was used to conditionally average the delayed signal.

The conditional averages close to the pipe wall (y* = 20) are in good sgreement with those
found by Blackwelder and Kaplan, but further from the wall significant deviations were observed. We found
burst phenomena even for y+ = 100, so that the structure appears to be bigger than expected.

Results of the measurements of the burst frequency and frequency spread as a function of the
Reynolds number, as well as the conditional averages, are presented.

1. INTRODUCTION

In the late sixties detailed flow visualisation studies of turbulent boundary layers (Refs. 1, 2)
showed that in these layers more or less periodic phenomena occur, related to "coherent structures” in
these layers. These structures - very often referred to as bursts because of the very rapid changes in
the velocity during a certain phase of the phenomenon - are thought to be the main mechanism in the
generation and maintenance of turbulence in flows. Since then coherent structures have been found and
studied in many other flow systems (Ref. 3).

The visualisation studies (Refs. 1, 2) ultimately led to the following schematic picture of the
phenomena in the turbulent boundary layer of a pipe flow.

The - always present - laminar sublayer, which has a high velocity gradient, starts to thicken
while the velocity gradient is maintained. As the layer reaches a certain thickness, it becomes unstable
and trips over its own velocity gradient, probably triggered by turbulent fluctuations in the bulk,
and generates a roll-vortex which is quite extensive in the tangential direction. The fluid with a low
velocity is thereby transported from the vicinity of the wall and becomes an obstacle for the fluid
in the bulk. Pressure begins to build up due to the deceleration of the bulk liquid and shortly after
that the vortex is swept away by the bulk liquid, leaving only the laminar sublayer. The vortex decays
in the bulk to generate random turbulence and the whole process starts anew. As the laminar sublayer
must reach a certain thickness, the process is more or less periodical, although it has a random spread,
probably because it is triggered by random fluctuations. A simplified picture is given in Fig. 1, which
has been taken from Ref. 1. '

One of the major problems in studying these phenomena is to discriminate between bursts and
background turbulence. Unambiguous criteria appear to be difficult to define (Refs. 4, 5). This will be
discussed in more detail in the section on signal processing.

However, visualisation studies have been of a qualitative nature, and although they reveal
much about the mechanisms involved, a need exists for quantitative measurements.

A study of coherent structures in pipe flow was initiated and because of the small dimensions
involved we chose a laser-Doppler velocimeter for the measurement of the average burst frequency as a
function of the Reynolds number, the frequency spread, the velocity signals and the conditional averages
of these. In this paper we present the first results of our experimental work.
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2. MEASURING EQUIPMENT

2.1. The flow system

The flow system consists of a closed pipe loop partly made of stainless steel and partly of
Perspex, and is shown in Fig. 2. For stability of the flow centrifugal pumps are used with a maximum
capacity of 10 1/s. The measuring liquid is water, which is kept at 20 * 0.2 ©C., The throughput is
measured by means of turbine flow transmitters with digital readout. For the sake of accuracy three
transmitters are used with overlspping ranges.

The Perspex measuring pipe, internal diameter of 50 mm and located between the two settling
chambers, is 6 m long. The actual test section is situated 4.5 m after the entrance of the measuring pipe.
The test section itself is of a different design to permit the use of a laser-Doppler velocimeter under
optimum conditions. It consists of a rectangular vessel, internal cross-section 80 x 100 mm and 600 mm long.
This vessel is filled with the same liquid as the pipe loop (in this case water) and at almost the same
static pressure as well. In the vessel a glass pipe is fitted with the same internal diameter as the
measuring pipe, but at the measurement location the glass is removed over half the circumference of the
pipe and a width of approximately 16 mm. Over the full length of the glass pipe a thin foil is glued on
the inside which acts as an inner wall for the flow. As this foil is forced in a cylindrical shape
and is supported by the glass tube along its full length, except at the measurement location, it is rigid
enough to withstand the pressure fluctuations of the turbulent flow field. In this way a very thin
(1ess than 100 um) wall is obtained without disturbing surface changes close to the measurememt location.
The test section is shown in Figure 3.

2.2. The laser-Doppler velocimeter

Detailed descriptions of laser-Doppler velocimeters and their use for measurements in turbulent
flows have been published in many papers. A convenient compilation can be found in Ref. 6. We will
therefore confine ourselves to a short review of the main aspects important for this study. As is well
known, the system uses small particles carried by the flow that scatter the laser light.

The main adventages of a laser-Doppler velocimeter can be summarised as follows:

- no calibration required

- no interference with the flow

- single component measured

- strict. linearity

- using the reference beam mode, easy alignment
- good spatial resolution.

Disadvantages of the laser-Doppler velocimeter are:

- noise in the output signal of the tracker (frequency-to-voltage converter) obscures the signals from the
small eddies;

- seeding is necessary in most cases, but in liquid flows the particles will follow the flow without
difficulty. In gas flows, however, this requires more attention.

Good spatial resolution can be achieved by a proper choice of the direction of the laser beams,
the angle between them and their diameter.

As can be seen from Fig, 4, the measuring volume of s laser-Doppler velocimeter, being as a first
approximation the intersection volume of the laser beams, is always long and thin, due to the narrow angle
between the beams. During operation all the signals coming from this volume are processed. This means
that eddies smaller than the measuring volume are averaged out and hence «cannot be measured. This puts
an upper limit to the longest dimension of the measuring volume. A reduction of this dimension can be
achieved by increasing the beam diameter before focussing it into the flow and increasing the angle
between the beams.

On the other hand, a reduction of the measuring volume implies that fewer particles per unit
time will contribute to the scattered light to generate the Doppler signal. In order to measure the
turbulent fluctuations sufficient particles must traverse the measuring volume per unit time, which puts
a lower limit to the size of the measuring volume.

The ratio of the length of the measuring volume to its width is limited by the angle between
the beams that can be obtained in practice. As this ratio ® 1, the spatial resolution differs in the
three perpendicular directions: in the direction of the beams it is smaller than in the directions
perpendicular to it.

For this study the highest spatial resolution is required in the radial direction because in
the vicinity of the wall the velocity gradients are the largest. In the axial and tangential directions
the gradients are a lot smaller or even zero. Consequently, optimum operation of the laser-Doppler
velocimeter will be obtained with the shortest dimension in the radial direction and the longest
dimension in either the tangential or the axial direction. This is illustrated in Fig. 5. For practical
reasons the tangential direction was chosen (Fig. SB), although the axial direction is theoretically
to be preferred.



As can be seen from Fig. 4, the direction of the longest dimension is also the main direction
for the laser beams that create the measuring volume. This means that in the case of Fig. 3B the beams
hit the pipe wall at a small angle, far from perpendicular, which implies that the pipe acts as a cylinder
lens, giving severe distortion of the beams.

To avoid distortion of the laser beams due to the small angle of incidence on the pipe wall,
the pipe was mounted in a rectangular vessel also filled with water, and the pipe wall thickness was
reduced to 100 um as described in Section 2.1. In this way the problems caused by the change in refractive
index from air into water were eliminated and distortion by the pipe wall reduced so far that measurements
down to 0.5 mm from the wall could be made. The influence of the wall thickness on the laser beams is
illustrated in Figs. 6 and 7 which show a laser beam traversing a wall of respectively 500 um
and 100 ym with water on both sides of the wall at two different positions from the wall. These pictures
show that a wall thickness of 100 um must be achieved.

The laser-Doppler velocimeter was operated in the reference beam mode for ease of alignment
(even the small distortion caused by the remaining wall thickness necessitates realignment for every
measurement point (see also Figs. 6 and 7)). It also enabled us to use cross-correlation techniques for
noise reduction in turbulence power spectral measurements (Ref. 7). A disadvantage of the use of the
reference beam mode is the higher sensitivity to laser noise. However, this noise is confined to the lower
frequency range (< 200 kHz) and by using a preshift of approximately 400-500 kHz, generated by a rotating
grating, the frequency of the Doppler signal was shifted to a band with minimum laser noise.

The output signal of the photodiode is filtered by a Krohn-Hite model 3103 band-pass filter
(see Fig. 8) and then fed into a tracker (TPD model 1077, designed and constructed by the Technisch
Physische Dienst, TNO-TH Delft, the Netherlands) where the frequency is converted into a voltage. The
output signal was used for further data processing and displayed on the monitoring oscilloscope.

2.3. Signal processing

The tracker signal was low-pass filtered to remove the noise (see Fig. 8, filter 1) from the
tracker and to act as anti-aliasing filter for the delsy line. To be able to change the filtering without
affecting the operation of the burst detector, it was separately band-pass filtered for use with the
burst detector (see Fig. 8, filter 2). The burst detector used was of the type described by Blackwelder
and Kaplan (Ref. 5). A burst detector should discriminate between bursts and background turbulence and
should behave neutrally on "pseudo turbulence". This will be discussed in more deteil in Section 2.3.h4
(Conditional averages).

2.3.1. Average burst_freguency

The output of the burst detector was fed into a pulse shaper to yield standard pulses that can
be counted. It appeared, however, that the burst detector was not able to discriminate completely between
bursts and background turbulence. Therefore, the count had to be corrected for the erroneous triggering
of the burst detector on the background turbulence. How this is done will be discussed in Section 3.1.

2.3.2. Time interval distribution

The time lapse between two successive pulses from the burst detector was measured and stored
in a 1024-position memory and fed into a computer for further processing. The imperfect diserimination
by the burst detector gave rise to erroneous pulses. This could not be avoided, but the average count was so
chosen that it corresponded to the average burst count obtained.

2.3.3. The axia) fluctuating velocity signals

As the burst detector reacts somewhere during the occurrence of the bursting phenomenon, it is
necessary to delay the signal in the measuring system in order to study the beginning of the phenomenon.
The degree of coherence between successive bursts is insufficient to use the detection of burst n to
trigger the measuring system for burst n + 1. Therefore, Blackwelder and Kaplan used two systems:
the first (upstream) is used for the detection of the burst and the second, a rack of hot-wires, for

study of the burst. This system has several disadvantages:

- The flow field at the location of. . the measuring system is influenced by the presence of the detection
system.

- The time lapse between the detection system and the measuring system is determined by the distance
between them and the turbulent convection velocity. As the latter is not constant, the delay time
is not constant either but varies from burst to burst.

—~ The evolution of the burst between the detection point and the measurement point complicates the
measurement: the burst may have disappeared on its way from the detection system to the measuring
system, for example if it is detected in its final state of evolution. This puts an upper limit to
the distance between the detection and measuring systems.

To circumvent these difficulties in the present study both detection and measurement were
carried out with the same laser-Doppler velocimeter using an electronic delasy line to capture the signal
and store it for a time that could be varied from 1 ms to 10 s. In this way the same signal was used
for detection and measurement. The delay line employed a 102L-position memory in which the signal
was stored after A/D conversion. After a certain time, determined by a continuously variable clock,
the store was read out and fed into a D/A converter. The delay time chosen was between 0.5 and 1 times
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the average time lapse between two successive bursts. In this way the signal as measured before the
actual detection moment was still availsble to study the onset of the burst phenomenon. The use is
illustrated in Fig. 9.

2.3.4. Conditional averages

The average value of the turbulent velocity fluctustions is by definition zero. If, however,
conditional averaging is used, this is not necessarily the case. The conditional average is defined as

N
F (1) = % z: £, + 1 - At)
n=1

¥ = conditional average of signal f

T = time delay since detection moment t, (> 0)

N = number of samples used

f = signal to be averaged conditionally

ty, = detection moment, determined by condition criteria
At = time delay of electronic delay line

Note again that the position in space at which the measurement is carried out is the same as that at
which detection occurs!

Using this technigue the "random" background turbulence was averaged out, the distinctive part
of the phenomenon remaining. The problem was mainly the generation of the trigger signal, If one induces
a flow field, e.g. in a stirred vessel, the trigger moment can be chosen as the passage of a reference
marker at the stirrer. In our case, however, the process was spontaneous and not controlled from the
outside. Therefore, the trigger signal had to be obtained from the velocity signal itself. A burst
detector as described by Blackwelder and Kaplan (Ref. 5) served this purpose.

The criterion for satisfactory performance of the burst detector is that filtered white
noise - a completely random signal that resembles turbulence but of course without the coherent
structures - must give a conditional average equal to zero for all delay times t. Strictly speaking,
the burst detector of Blackwelder and Kaplan does not satisfy this condition, but it comes close to
it, as was reported by them (Ref. 5) and confirmed by our own experiments for which we used basically
the same burst detector as Blackwelder and Kaplan's.

For this study a Hewlett-Packard 3721A correlator in the signal recovery mode was used as
an averager. Either N=102)4 or 2048 samples were used to determine the conditional average.

3. RESULTS

3.1, Average burst frequency

If the reference level on the burst detector is low, it will respond both to bursts and to
background turbulence. Increasing the reference level will reduce the number of counts per unit time.
Increasing the reference level even further will cause the burst detector to ignore the smaller bursts.
In order to determine the optimum threshold level burst count measurements were carried out at various
threshold levels. We hoped to find a range where the number of counts per unit time would be (almost)
independent of the reference level. However, this did not happen. Only a weak shoulder appeared in the
number of counts per unit time as a function of the reference level, as is shown in Figure 10. Although
it was reproducible, it is toc weak to give an unambiguous result for the burst count. Therefore, a more
indirect technique was used. As stated before, the burst detector reacts either to burst or to background
turbulence. Just as the conditional average with simulated turbulence is (almost) zero, the contribution
from the background turbulence to the final conditional average can be ignored. Hence, the final
conditional average will still be of the correct shape, but as the averager divides the contribution of
each of the signals by the number of signals to be averaged, 1ts amplitude will be too small, because not
all signals give a contribution to the conditional average of the burst. Its shape is therefore independent
of the reference level, but not its amplitude.

Assuming now that the conditionsal average is meaningful, it can be used to study the behaviour
.of the burst detector by comparing the velocity signal to which the burst detector reacted with the
conditional average itself. This enabled us to divide the signals that made the burst detector react into
two classes: the signals that resembled the conditional average, which represented bursts, and those
that did not, which were due to background turbulence. With this division the count could be corrected
to curve b in Figure 10. From this a clear value for the average burst count is obtained. Note that even
at high reference levels the count still included erroneous counts from random turbulence. Using this
technique, the average burst freguency was measured at three Reynolds numbers. This is illustrated
in Figure 11, which shows that the average burst frequency is, as a good approximation, proportional to
the Reynolds number.



3.2. Meagurement of the frequency spread

The results for the frequency spread were obtained by setting the reference level such that
the average count corresponded to the average burst count as obtained in Figure 10. The time interval
between two successive pulses was measured and fed into a computer. From over 30 000 measurements
the time interval distribution was calculated. The result is shown in Figure 12A.

The interval distribution is influenced by the imperfect behaviour of the burst detector, as it
also reacts to background turbulence, which can be seen from Figure 10, However, the distribution is
very broad, so that we think the effect of the probably random distribution of the background turbulence
is not very important. Improvement of the behaviour of the burst detector by implementing more
sophisticated detection criteria will improve these results.

The peak for low values of At is shown in more detail in Figure 12B. At this moment we do not yet
know the cause of this peak, but we tend to believe that it is caused by multiple reaction of the burst
detector to bigger bursts and/or to the vortical activity shortly after the burst (see also next section).

The wide distribution may have three causes:

1. Variations in the time intervals can be expected because triggering is more or less random, so that
the time that the laminar sublayer is steble is not constant.

2. The burst effect is two-dimensional and two bursts positioned differently in the tangential direction
mey both be detected. The time interval between two such detections may be not, or not completely,
correlated.

3. Coalescence of bursts may occur, and if this happens the two bursts will come close together. We have
also found additional evidence for this from the velocity signals.

Plotting of the results shown in Fig. 124, except for the first two points, which may be erroneous, on a
semi-logarithmic scale, as shown in Fig. 13 yields an almost straight line, which indicates that the
distribution observed must be due to a more structural phenomenon, which we do not yet know.

3.3. Velocity signals

The actual velocity signals of u' show that the phenomenon is accompanied by vortex motions, as
can be seen clearly from the typical signals shown in Figs. 14-19. This has also been found from the
visualisation studies (Refs. 1, 2). As will be shown in the next section, some velocity-time traces
resemble the conditionally averaged velocity signals, but some are obscured by the "random" background
turbulence. It can be seen that the "random" background turbulence mostly has a more or less periodic
character, which points at vortices passing by. The most striking phenomenon in the pictures is the very
rapid acceleration to which the burst detector reacted roughly 4.5 divisions from the left.

3.4, Conditional averages

The conditionally averaged axial velocity fluctustions measured at different y+ values for
Re = 9500 are shown in Figure 20 as a function of time. The detection moment corresponds to t=0. These
traces show that the structure extends quite far from the wall, It is important to note that these
conditionally averaged axial velocities differ strongly from those reported by Blackwelder and Kaplan for
higher y* values, as can be seen from Fig. 21. The following causes may explain this difference:

- The use of the hot-wire technique by Blackwelder and Kaplan lias prevented them from distinguishing
between the u' and v' components. As u'v' is negative, in particular during bursts, the decrease in u'
as measured by us may be compensated by an increase in v'.

- The use of the convection velocity to determine the time delay will cause phase fluctuations which will
tend to smooth out sharp edges such as those shown here, especially at higher y* values. Moreover, the
wire used for detection is positioned at a low y* walue (y* = 15).

- The evolution of the phenomenon may have strode along so far that the burst had partly disappeared
before the authors measured it.

- Qur conditionally averaged axial velocity signals are measured at a higher Reynolds number (9500 vs.
2550) .

However, study of their velocity signals shows that the bursts can clearly be detected at high
y* values, while their conditionally averaged velocity signals are then almost zero. This indicates that
the last potential cause is not so important.

The influence of the phase fluctuations was later on recognised by Blackwelder, too, and
corrected for (Ref. 8), which resulted in conditionally averaged velocity signals that resemble our
results, but even then differences remain.

We conclude from this that the conditionally averaged streamwise velocity signals must show
some structure for high values of y .

A striking feature of the conditional averages found by Blackwelder and Kaplan and confirmed
(except. for some details) by our own measurements is the following: Normalising the velocity by dividing
it by the reference level results in a conditional average that is (almost) independent of the reference
level.
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Blackwelder and Kaplan concluded that this was caused by the inclusion of smaller bursts at
Jlower reference levels. Although this seems obvious there are arguments that point in a different
direction, such as:

- One does not only measure the bursts at the reference level but also at levels above the reference
level. This means that a reduction in reference level would give a less than proportional reduction in
amplitude (maximum difference in velocity). If one were able to discriminate completely between bursts
and random turbulence the conditional average would not be affected at all,

- The burst detector compares as a first approximation the square of the signal with the reference level
(Ref., 5). This gives a less than proportional reduction in amplitude.

- The burst detector will give relatively more erroneous trigger pulses at lower reference levels
(Fig. 10), which results in a reduction in amplitude if we assume that the contribution of the erroneous
signals to the conditional average is zero.

This phenomenon will only be clarified through a further study of the behaviour of the burst
detector and measurement of the size distribution.

The disappearance of the vortex signals from the conditional averages is probably caused by a
wide spread in vortex size, which causes phase fluctuations. This is confirmed by the rate of disappearance:
the more samples are used for conditional averaging, the less pronounced they are.

L., CONCLUSIONS

The laser-Doppler anemometer is a useful tool for measuring coherent structures in liquid flows.
The optical difficulties that arise when measurements are to be made close to the wall can be overcome
without costly solutions and without risk of distorting the flow field close to the measurement position.
The laser-Doppler anemometer has some very useful properties for studies of this type.

Using this technique and the burst detector described by Blackwelder and Kaplan, the average
burst frequency can be measured with sufficient accuracy. The measurement is, however, very laborious.
The time interval distribution, on the other hand, cannot be measured so accurately, due to the imperfect
behaviour of the burst detector. The accuracy of these measurements can be improved by making the criteria
for detection more complex. This would also improve the the speed of the measurements of the average burst
frequency .

On the basis of our experiments we may say that, as a good approximation, the average number
of bursts per unit time was proportional to the Reynolds number. The average burst frequency is in
reasonable agreement with the literature.

The measurements of the time interval distribution show a very wide distribution which is close
to linear on a semi-logarithmic scale. This suggests a certain underlying mechanism that we do not yet
know. But it is too typical to be accidental.

The velocity signals show that the phenomenon is accompanied by strong vortex motions. It is not
clear from our experiments whether these are cause or result.

The good result obtained for the average burst freguency due to the use of the conditional
average shows that the conditional average is meaningful., This is also illustrated by the ease with which
velocity signals are obtained that are a good resemblence of the conditional average.

The disappearance of the vortex motions from the conditional average is probably caused by a
wide spread in vortex diameter. As the vortex diameter is probably in some way related to the burst size,
which in its turn will probably be related to the time interval between two bursts, this is not surprising
because the time interval distribution is very wide. This implies that conditional averages should be used
in combination with the velocity signals themselves.

The conditional averages reported here differ significantly from those reported in the literature.
This is mainly due to the use of improved measuring and processing equipment.

One of the major problems at this moment is how to combine the results of the visualisation
studies with studies like this one, in order to obtain a general model for the bursting phenomena in
boundary layers. At this moment the conclusions drawn from the visualisation studies are not yet in
agreement with each other. Some investigators conclude that the wall fluid is the cause of bursting,
others report that the bulk fluid is the cause. The problem can probably only be solved if theoretical
models can be formulated that explain the results found.
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FIG. 7. AS FIG. 6, BUT WITH A WALL THICKNESS OF 0.l mm
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TURBULENT BOUNDARY LAYER STRUCTURE AT LOW & HIGH SUBSONIC SPEEDS
v. Zakka&h v. Barrérgnd K. HozumeT
New York University
Department of Applied Science
26-36 Stuyvesant Street
New York, N.,Y, 10003

Abstract

Results of simultaneous measurements of velocity, wall pressure, and wall-shear fluctuations in a
turbulent boundary layer are presented. The measurements were performed in a range of velocities from
40-700 ft/sec, and a range of Reg from 104 to 105, The results are analyzed in an attempt to obtain a
description of the coherent or quasi-ordered structure of the boundary layer turbulence, On a large scale,
the boundary layer is dominated by vortical structures which extend to the viscid-inviscid region, The
wall region is dominated by the so called "bursting" process, The relationship or interaction between
the large scale outer structure and the turbulent "bursts' is still not clearly defined, The present
experiments were particularly performed in order to understand how these processes develop and how their
relationship changes with increasing Reynolds number, The results of this investigation at high speed,
while confirming some of the previous results with regard to the mean period between coherent events,
and their geometrical configuration, did not yet resolve the question as to whether at high subsonic
speeds there is, besides the outer flow processes, a distinct inner region. With the limited instrumenta=
tion available it was not possible at the high subsonic speed to resolve any inner sublayer region,
although it was found that the outer flow structures exert a strong influence on the wall, The experi-
mental results at low subsonic speeds,on the other hand, did indeed identify an inner and outer region,
and duplicated some of the results obtained at low subsonic speed by other investigations.

Introduction

The discovery, by means of visual observations (Refs., 1-7) of an organized structure in turbulent
shear flows has led to a proliferation of new measurement and data analysis procedures for the investiga-
tion of the fluctuating properties of such flows (Ref. 8-19), Questions have been raised concerning the
adequacy of measurements which utilize instrumentation and analyses not suited to the coherent, quasi-
periodic nature of the flow structures. It has been found that the size of the transducers used in the
measurements and the frequency response of the associated electronies is an important consideration in
terms of the varied scales of the flow structures; and that single point measurements and conventional
time averaged analyses cannot reveal much useful informatiom about coherence or intermittency both of
which are important aspects of the flow processes involved,

To overcome these problems, modern research efforts have turned to minituarized instrumentation and
multiple measurements to obtain spatial resolution of the coherent flow structures, and to digitization of
the measurements so as to allow various time series analyses to be performed on high speed computers,

With respect to the latter, it has become increasingly popular to apply various conditional sampling
procedures to the digitized fluctuations in order to isolate temporal sequences associated with the coherent
structures, This type of analysis has revealed, among other things, that significant contributions to the
long time average Reynolds stress occur during intervals when coherent structures are present in the flow,
thus indicating that the modelling of turbulence and the development of drag and noise reduction mechanisms
might benefit greatly from a better understanding of these structures.

Visual observations of turbulent boundary layer flows seeded with varilous tracers have indicated the
presence of several different processes involving repetitive flow structures. The wall region
Gyt=v uT/v < 100) is characterized by streamwise streaks of low speed fluid which lift up from the wall
resulting in locally inflexional velocity profiles, The lift-up is followed by some sort of oscillatory
motion and then a sudden breakup into small scale turbulence. The ejection of low speed fluid from the
wall is accompanied by sweeps of high speed fluld from the outer regions toward the wall, This overall
process has been referred to as a '"burst" (Refs. 20-21), On a larger scale, the boundary layer is
dominated by vortical structures which extend to the viscid-inviscid region (Refs, 6, 14, 16), The
relationship or interaction between this large-scale outer structure (LS0S) and the turbulent "bursts" is
still not clearly defined. 1In particular, how these processes and their relationship change with in-
creasing Reynolds number has not been fully explored, On the basis of observations and measurements over
a limited range of Reynolds numbers, it has become commonly accepted that the ''bursting'' process is
strictly a sublayer phenomenon that scales with wall variables, while the large-scale outer structure is
basically Reynolds number independent, A possible link between the two processes may exist in the fact
that the frequency of occurrence of the turbulent '"bursts' has been found to scale with outer flow
variables and seems to be related to the period of passage of the outer structures (Refs, 22-23),

The primary goal of this investigation has been directed to study these phenomena at a high subsonic
speed, and to specifically determine the possible role or influence of pressure fluctuations on the
processes involved, Whereas most studies in this area tend to be at relatively low free stream velocities
(typically, U, < 100 ft/sec) and Reynolds numbers (Reg < 104), the present results are for a turbulent
boundary layer with U, = 675 ft/sec and Reg = 108,000, In addition, simultaneous measurements of three
properties of the turbulent flow, namely, the streamwise velocity, the wall shear and the wall pressure
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were made, Preliminary results from measurements at U, = 675 ft/sec led to the conclusion that it would
be of some value to have comparitive measurements at lower velocities, Therefore measurements for
boundary layers with U, = 73 ft/sec and U, = 32 ft/sec were also made, and are presented for comparison,

Experimental Facilities and Procedures

The New York University one foot diameter induction tunnel was used for this research, The facility
has been described in detail in Refs. 19 and 24, The capability of varying the velocity from 30 to 700
ft/sec has since been added to the wind tunnel. In addition the wind tunnel was modified so as to allow
the test section to be located at several distances from the inlet of the tunnel, This allowed the
measurements to be made at various distances from the inlet depending on the boundary layer thickness
required (at the lowest velocity, a boundary layer thickness of 3" was reached within 15 ft of the tunnel
inlet),

The development of the data gathering system and the analysis programs has been a wmajor part of the
present research program (see Ref, 19), The system has been greatly improved by the acquisition of a
PDP~11/34 mini-computer and a 14 channel tape recorder. The mini-computer system includes 64K bytes of
memory, two terminals - one of which is an interaction CRT graphics terminal, floppy and cartridge disk
mass storage, and most significantly, a 64 chamnnel A/D converter with two programmable clocks, Programs
have been developed on this system which are capable of performing the following analysis on a production
run basis:

1) Long-time average auto and cross correlations.

2) Conditional sampling using the variable interval time average (VITA) variance (see
Kaplan and Laufer (Ref. 25) or Blackwelder and Kaplan (Ref. 8)).

3) Pattern recognition analysis to compensate for random phase "jitter" in conditional
samples (see Blackwelder (Ref, 26)).

4) Short-time, conditionally sampled auto and cross correlations (see Brown and
Thomas (Ref. 14)).

These analyses can be applied directly to the original digitized data or to the data after it has been
filtered using the Fast Fourier Transform to include only components within a chosen bandpass, In this
way it should be possible to determine the importance or influence of different frequency ranges on
particular results, From the use of the different analyses it should also be possible to determine if
different approaches to conditional sampling produce comparable results when applied to the same data,

Test Conditions

In Ref, 19 experimental results were presented for U, = 675 ft/sec. Since that time the measurements
have been repeated for two new sensor arrays and more extensive analyses have been performed, In addition,
extensive mean and fluctuating flow measurements at Us s 75 ft/sec and Us ay 30 ft/sec have also been made,
The mean flow properties of the boundary layer at several stations along the tunnel for these three flow
conditions are summarized in Table I, Simultaneous measurements of the fluctuations have been made
primarily with the sensor array shown in Fig, 1 and more recently with that shown in Fig. 2, In the
latter, six wall-shear measurements are oriented so as to yield information about the turbulent structure
in the lateral directions. The present results are for data from the following test conditions:

- U = 675 ft/sec, X/D = 31, Both arrays (i.e., Figs. 1 and 2)
- U = 73 ft/sec, X/D = 15,5, Fig. 1 array only

- U = 75 ft/sec, X/D = 20.5, Fig. 2 array only

- U = 32,6 ft/sec, X/D = 20,5, Both arrays

The aim of these tests is to yield data over a wide range of Reynolds numbers (i,e., from approximately
5000 to 100,000) while maintaining the boundary layer thickness in the neighborhood of 3 to 4 inches, The
friction velocity, an important parameter in terms of the wall layer, also takes on & wide range of values
for these tests, that is, from 1.8 ft/sec to 18 ft/sec.

Discussion of Measurements

A, Velocity, Wall-Shear and Wall-Pressure (Fig, 1)

Spectral analyses of the measured fluctuations have shown basic agreement with previous measurements
except in the case of the pressure fluctuations in the two low speed cases (Us = 73 ft/sec and Us = 32.6
ft/sec), As the result of many previous measurements it is to be expected that the rms level of the wall-
pressure fluctuations will fall somewhere between 0,57 and 1% of the dynamic pressure, ¢o. In the case of
Uo = 675 ft/sec a reasonable level of 0,008 Qe Was measured, But at U, = 73 ft/sec and 32.6 ft/sec the
measured levels were equivalent to approximately 0.23 q, and 0,65 q,, respectively, The explanation for
this is that, for the low speed tests, the wall-pressure fluctuations due to the turbulent boundary layer
become so weak that they drop below the noise "floor" of the measuring devices. The noise 'floor" is made
up primarily of tunnel noise, although other sources such as transducer vibration response and mis-
allignment with the tunnel wall may also contribute to it.

Research performed by other investigators, determined that the level of tunnel noise could be lowered
with extensive acoustic treatment of the sonic throat section of the tunnel (where the flow undergoes
rapid acceleration) and by improving the suspension system of the tunnel, These modifications were not
undertaken for several reasons, First, in the high subsonic regime where the primary interest lies, the
wall-pressure fluctuations due to the turbulent boundary layer are found to be sufficiently above the noise
"floor" to allow for accurate measurements, Secondly, in the low speed case the main interest is in looking
at the wall-shear and fluctuation velocity profiles (for comparison to those obtained at high speed), the
measurement of which is not significantly affected by tunnel noise as the spectra of these measurements
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seem to indicate, And lastly, the measurement of very low pressure levels would require transducers with
much greater sensitivity than the ones that are presently being used.

Sections of the data are digitized for all three free stream velocities and for both of the measure-
ment arrays shown in Figs. 1 and 2, Various combinations of the analyses listed previously are applied to
the digitized data in an attempt to obtain results comparable to those found by other investigators and to
compare certain properties of the quasi-ordered turbulent structure at the varied flow conditions, It is
becoming more evident from continued use of the VITA variance analysis that one must be carefull when
looking at the mean period between events detected with this scheme. The number of times that the analysis
will indicate the occurrence of an event in a fluctuating quantity used as a trigger will depend strongly
on the threshold level applied to the VITA variance of that quantity. The results 'indicate that for all
three free-stream velocities a threshold level equal to approximately one~half the long time rms of the
fluctuating quantity in most cases yields a mean period between events given by TUy/8 v 5, although this
will vary depending on the measurement used as the trigger, However, this period does not seem to be any
more significant than any other that is obtained from this analysis with a different threshold, Some
other criteria would have to be used to determine the threshold which has physical meaning in terms of a
specific type of organized structure,

Although care must be taken when interpreting the mean period between events obtained in this way, an
ensemble average of a set of events detected using the VITA variance can be helpful in depicting average
or typical characteristics of coherent structures in the flow. Such a set of ensemble averages of the
velocity and wall-shear fluctuations are shown in Figs., 3-5 for the three flow conditions and for the
array shown in Fig, 1, They were obtained by applying the VITA variance analysis to the velocity fluctua-
tions at y = ,075"(0) to obtain a set of times where the fluctuations at this point indicate the
occurrence of flow processes with certain repetitive characteristics., An ensemble average is then taken
of 512 data points centered about these times for each of the six velocity and one wall-shear measurement,
It can be seen from Fig, 3, that for U, = 675 ft/sec there is a defimite correlation across all seven
measurements; that is, the average structure that the analysis triggers on enEBhpasses, or at least has a
strong influence on, all seven measurements. That is not the case for the two low speed flows, Figures &
and 5 show that, for the trigger at y = ,075"(0) (i.e., in the wall region), the average structure extends
or correlates only over the three or four measurements nearest the wall, The fact that this correlation
seems to extend almost twice as far from the wall (i.e., to y = .275'"(K)) for U, = 32.6 ft/sec (Fig. 5)
than for U, = 73 ft/sec (Fig. 4) may be an indication that this inner region shrinks toward the wall with
increasing flow velocity, or alternatively, that it scales with wall variables.

To see whether a similar coherence exists in the outer measurements for the low speed flows, the
analysis was repeated using the measurement at y = ,375"(J) as a trigger, The results, shown in Figs., 6
and 7, indicate that there is a correlated structure in the outer region which does not seem to extend
further down than y = ,275"(K) from the wall., How far up in the boundary layer this coherence extends
cannot be deduced from the present measurements,

An attempt has been made to determine if the loss of coherence with distance is due to noise that
enters into the ensemble averages because of random variations in the phase between the events at the
trigger and that at the measurement being averaged (see Blackwelder (Ref. 26))., A pattern recognition
analysis was applied to adjust the phase, with respect to the trigger at y = ,075"(0), of each event in
the ensemble averages, The results shown in Figs, 8 and 9 are to be compared to Figs, 4 and 5, respec-~
tively. Since each event in the ensemble averages has been shifted to zero time delay, the averaged
events are centered about t = 0 in all cases, The actual phase relationship of each average to the trigger
at y = ,075"(0) is given by the average shift of all the events in the ensemble, This is shown for each
measurement position on both figures, It can be seen that for U, = 73 ft/sec (Fifs. 4 and 8) this phase
correction procedure has little effect in improving the emsemble averages, thus indicating that the loss of
coherence in the outer measurements is not due to random phase "jitter" but rather to the fact that the flow
structures in the wall region do not, on the average, extend beyond y o .075" - ,175" (y+'§ 112-261), Omn
the other hand, the phase correction procedure does result in a definite improvement in some of the
averages for Usx = 32.6 ft/sec (Figs. 5 and 8), This is particularly evident at y = ,175"(L) and to a
significantly lesser degree at y = ,275"(K), Thus, after correction for phase "jitter'" it becomes more
clear that as the velocity is lowered the coherence of the inner structure extends further from the wall
(i.e., to y ay .175" - ,275" for U, = 32,6 ft/sec) or perhaps that the inner region scales with wall
variables (yt 160-252), The results of Fig. 3 for U, = 675 ft/sec are not inconsistent with this con-
clusion since all the measurements except the wall-shear are outside the wall region and the high degree
of correlation of this measurement with the outer region may be only in terms of the low frequency com-
ponents associated with the outer structure, This will be discussed further in the following paragraphs,

The ensemble averaged velocity and wall-shear fluctuations shown in Fig, 3 for Us = 675 ft/sec can be
plotted to yield a sequence of fluctuating velocity profiles which are presented in Figure 10. The
instantaneous total velocity profiles corresponding to this sequence are shown in Fig, 11, These profiles
show a great many similarities to those which have been measured in the wall region of low speed boundary
layer flows, in particular, to those obtained by Blackwelder and Kaplan (Ref, 8). Attempts to depict the
profiles in the low speed cases is hindered by the limited number of measurements in a given region, but
indications are that the flow structures in both the inner and outer regions show the same type of
coherence, (A similar conclusion was reached by Chen and Blackwelder (Ref, 16) from measurements of
velocity and temperature in a boundary layer over a slightly heated wall), It is not possible to say
whether these similarities are a result of the fact that the wall region "bursts'" possess the same type
of time signatures in terms of the streamwise velocity as the large scale outer structure or that they are
a consequence of the detection scheme being used, that is to say, the detection scheme triggers on some
"typical" structure which exists in both regions,

On the assumption that the former is the case, the available data will be analyzed further to de-
termine what relationship exists between measurements in the inner and outer regions, From this, some
insight may be gained into a possible interaction mechanism between the wall region "bursts' and the large
scale outer structure, For the low speed flows, this will involve examining individual events occurring
in the inner and outer regions and seeing if any interaction exists between them, In the high speed case
this can only be done with the wall measurements. By looking at these fluctuations in various frequency
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ranges it may be possible to isolate the components associated with the ''bursting" process and to de-
termine what relationship exists between these and the large scale flow structures, The success of such an
analysis will depend strongly on the ability to accurately resolve the very small scales associated with
turbulent "bursts'', In this regard, a commercially available pressure transducer having a diameter of
0.010" will be tested and its output compared to that from the transducers now being used (d = 0,040"),

Some preliminary results have been obtained concerning the behavior of the wall pressure fluctuations
from the measurements and data discussed in Ref, 19 for U, = 675 ft/sec, The measurement grid was similar
to that shown in Fig. 1 except that fewer sensors were available at that time and the streamwise velocity
was measured at slightly different positioms, Figure 12 shows the result of taking the ensemble average
of 60 events detected over an interval of TUs/8% = 2000 using the velocity fluctuations at y/B 0,088 as
the trigger., The velocity and shear fluctuations are basically the same as those in Fig, 3 since the
trigger is at approximately the same position in both cases, From Fig. 12 the wall pressure fluctuations
can be seen to be characterized by a well defined period of overpressure during the passage of the flow
structures in the outer reglon, An examination of the wall pressure fluctuations during individual events
consistently shows the superposition of large amplitude high frequency components on the more slowly
varying period of overpressure, The fact that these high frequency components do not appear on the average
would indicate that they are eilther a random phenomenon or that they occur at a random phase with respect
to the process which triggers the detection scheme, It should be possible to determine which is the case
by filtering the pressure fluctuations to obtain some representation of the high frequency components and
then applying a detection scheme to see if coherence also exists in this aspect of the data, A dominant
phase relationship between the low and high frequency components of the fluctuations could also be de-
termined by cross=-correlating the two,

B, Wall-Shear Measurements in the Lateral Direction (Fig. 2)

Measurements with the wall-shear array shown in Fig. 2 have been analyzed for U, = 675, 75, and 32,6
ft/sec. Figures 13-15 show the results of taking ensemble averages at each position using the measurement
at C as the trigger for detecting the occurrence of events, It can be seen that except for the high speed
case (Fig. 13) there is no discernible correlation in the lateral direction, whereas a definite correlation
exists for the measurement (F) oriented directly downstream of the trigger position, This is to be ex=
pected since previous measurements as well as visual observations have indicated that both the wall region
"bursts'" and the large scale outer structures maintain a high degree of coherence for large distances in
the streamwise direction. The extent and spread of these structures in the lateral direction is much more
limited, In the case of the wall region processes, for example, the separation between the streamwise
streaks is estimated to be on the order of Z%t &y 100, while each individual streak is confined to a fraction
of this distance.

. It is not clear from the results of Figs. l3~15 whether the detection scheme we are using triggers on
the wall region structures or on the response of the wall shear to the passage of the large scale outer
structures, It can be seen from the non-dimensional distances in Fig. 2 that, at least in the case of

= 32,6 ft/sec, the size and separation of the wall shear sensors should be adequate for discerning some
aspects of the wall regilon processes, However, several factors would seem to indicate that the typical
wall shear response seen in the measurements at C and F in Figs, 13-15 is a result of the large scale
outer structure, First, the typical response histories in the low speed cases (Figs., 14 and 15) con-
sistently show that what appears to be an overshoot or superimposed high frequency component at the top of
the rapid change in the wall shear, A similar phenomenon was observed by Brown and Thomas (Ref, 14) in
their wall shear measurements and led them to speculate that the superimposed high frequency component was
a manifestation of the "bursting" process. The high frequency component was seen to occur at a well de-
termined phase with respect to the low frequency component attributable to the large scale outer structure,
specifically, it occurred near positive maxima of the fluctuating shear, A similar conclusion concerning
the present results would seen to be supported by the fact that this effect appears to be more pronounced
in Fig, 15, i.e., U@ = 32,6 ft/sec (where better resolution is possible of the wall regilon processes) than
in Fig, 14 for U, = 75 ft/sec, and doec not appear at all in Fig, 13 for U, = 675 ft/sec wherc the in-
strumentation is not capable of resolving anyprocesses on the scale of the wall region.

A second indication that the well defined time signatures in Figs, 13-15 are basically the response
of the wall shear to the outer structire comes from the results of a phase correction analysis shown in
Figs, 16 and 17 for Us = 675 ft/sec, in Figs. 18 and 19 for U, = 75 ft/sec and in Figs., 20 and 21 for

= 32,6 ftfsec., The set of events which are detected by using T'(C) ag a trigger are divided into two
groups depending on the phase relationship between each event at C and any similar event found at B by the
pattern recognition analysis referred te earlier, The search for a similar event was restricted to time
delays approximately in the range -5 < t'U,/8%< 5, The ensemble averages obtained for the set of events
where a match was found at a later time in 7'(B) (positive delay) are shown in Figs. 16, 18, and 20 and at
an earlier time (negative delay) in Figs. 17, 19 and 21, The average time delay by which the events in each
ensemble average were shifted is also indicated in these figures. The marked improvement, particularly for
the two low speed cases, in the ensemble averages (compared to Figs, 13-15) shows that a coherence exists
in the lateral direction which was previously obscured by random phase "jitter" and which extends across
three or four of the measurements, i.e., Z' as 500-5000. This could not be as a result of wall region
processes which have been observed to be confined.to lateral distances on the order of 7+ 50,

The fact that the events can be separated into two groups with opposite phase relationships across
the lateral measurements is thought to be an indication of the "arrowhead" or "horseshow' type shape
(see Fig, 2) that has been hypothesized for the large scale outer structure when looked at from above the
wall of the boundary layer., It is clear that the phase relationship one would obtain among a set of
lateral measurements would depend on which ''leg' of the structure crosses the measurements, From the
results of Figs. 1621 it 1s possible to estimate the angles gt and g~ in Fig. 2 that each "leg" makes
with the X-axis. Taking the average time delay between the measurements at C and F one obtains a stream-
wise convection veloclty of Ug/Us = 0.70 for Us = 675 ft/sec, U./U, = 0.69 for U, 75 ft/sec and Ue/Uy,= 0.64
for U, = 32.6 ft/sec. Using these convection velocities and the time delay between F1(c) and T'(B) in
Fig. 16, the angle ¢t is estimated (locally and on the average) to be 5,89 for U, = 675 ft/sec., The time
delay in Fig, 19 yields a 6= of 6,30, Similarly from Figs, 18 and 19 for U, = 75 ft/sec 6% ., 18° and
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6~ oy 150, and from Figs, 17 and 18 for U, = 32,6 ft/sec ot = 20° and = = 179, 1The slight differences in
ot and 9~ are due to errors in the estimates, since by symmetry they should be equal, The results in the
two low speed cases compare favorably with the angle of 22° estimated by Thomas (Ref. 15) from similar
measurements at U, v 100 ft/sec. The much smaller angle obtained in the high speed case could be an
indication that the flow structures become more confined in the lateral direction as the free stream
velocity is increased.

Conclusions

Measurements of the fluctuating properties of a turbulent boundary layer for a wide range of free
stream conditions have been analyzed to obtain information concerning coherent or quasi-ordered structures
in the flow. The primary interest of the investigation is for free stream velocities in the high subsonic
regime (specifically, U, = 675 ft/sec), although comparative measurements have been made at two lower
velocities, i.e. Uy g 75 ft/sec and U, my 30 ft/sec. The Reynolds number, Reg, ranges from 105 down to
approximately 104, while the boundary layer thickness is maintained relatively constant at between 3 to 4
inches.

Recordings of the fluctuating streamwise velocity, wall-shear, and wall-pressure in the boundary layer
are digitized to obtain simultaneous time histories of the fluctuations. These are analyzed on a mini-
computer using various conditional sampling procedures to isolate temporal sequences associated with the
coherent structures. From this the mean period between occurrences of the flow structures is estimated
and ensemble averages found. These ensemble averages and cross—correlations between measurements at
different positions during the occurrence of events are used to deduce information concerning the geometry
of the flow structures.

Measurements for two arrays of sensors have been analyzed in this way. In one, wall-shear and wall-
pressure sensors are aligned in the streamwise direction upstream of a rake of six streamwise velocity
probes. 1In the other, wall-shear measurements are aligned so as to yield information about the flow
structures in the lateral direction. Using a variable-interval time-average (VITA) variance analysis to
detect the occurrence of events in the data, the mean period between events (T) is found to be approxi-
mately given by TU,/8x5, although some variation is found depending on the measurement used as the trigger
for detection. The number of events detected using this technique, however, is strongly dependent on the
threshold chosen in the analysis. The estimate given here was obtained with thresholds in the neighbor-
hood of one-half the overall rms of the fluctuations under consideration. But this choice seems rather
arbitrary and the resulting mean period between events should be judged accordingly.

Irregardless of these questions about the number of events detected, a normalized ensemble average of
all the events is useful in depicting certain characteristics of the flow structures. TIn the case of the
streamwise velocity measurements normal to the wall for Us = 675 ft/sec, it was found that the average
structure correlates well over all the measurements including the wall-shear. This was not the case for the
two low speed flows. If a measurement near the wall is used as a trigger the resulting ensemble averages
display coherence only up to a certain distance from the wall (i.e., up to yt o 100-200). A similar
coherence exists in the outer measurements when one of these 1s used as a trigger. In addition, the
boundary between the inner and outer regions seems to be further from the wall for Us = 326 ft/sec than for
U = 73 ft/sec. This may be an indication that the inner region scales with wall variables.

The similarity of the coherence in the inner and outer regions as well as the similarity between the
present measurements in the high speed case (which, except for the wall measurements, are in the outer
region) and the results obtained by others in the wall region of low speed flows may be due to one of two
reasons. Either the detection scheme being used triggers on some "typical" structure existing in various
regions of the boundary layer, or the wall region "burst" process exhibits the same time signature in terms
of the streamwise velocity as certain aspects of the large scale outer structure. It is not possible to
determine from the present results which of these is actually the case.

0f particular interest in the high speed results is the fact that the coherence seen in the outer
measurements extends to the wall. Both the wall-shear and the wall-pressure show a definite correlation
to the passage of the outer structure. This is not the case, at least on the average, for the two low speed
flows. By looking at individual events in the low speed measurements more carefully it should be possible
to determine if there are events which exhibit some correlation between the inner and outer regions. To
determine whether the st¥ong correlation seen in the high speed measurements is due to the inability of the
sensors to resolve the small scales associated with the wall region processes, a pressure transducer which
is ¥ the size of those now being used will be tested. With regards to this question of the interaction
between wall region processes and the large scale outer structure, an attempt will also be made to look at
the measurements in various frequency ranges and to see what relationship exists between them.

Two important results were obtained from the wall-shear measurements which concentrated on the lateral
aspects of these flow structure, or to be more precise, of their "footprint'". From two measurements
aligned in the streamwise direction, the average convection velocity of the flow structures was found to be
in the range U, = 0.6 - 0.7 Ux. This result, combined with the phase relationship found between the same
event as measured at two adjacent lateral position, was used to determine the angle that the sides of the
flow structure makes with the streamwise direction. This angle was found to be approximately 200 for
Uow = 32.6 ft/sec and 18° for Us = 75 ft/sec. 1In the high speed case (Up = 675 ft/sec) a much smaller angle
of about 6° was estimated. This would seem to indicate that the flow structures tend to become more
confined in the lateral direction as the flow velocity increases.
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X/D 15,5 20,5 9, 15,5 31. 31. 11
M 0.0263 | 0.0296 0.063 0.067 0.072 % |
U (ft/sec) | 29.6 32,6 69.0 73.0 l|' 79.0 675 |
a_ (psi) 0.0068 | 0,0086 0.039 0.046 l'| 0.054 2,9
5 (in) 2,7 3.5 2.15 | 3.0 ‘ w~ 5.5 4.0
" (in) 0.39 0.497 0.265 \ 0.37 o 0.8 0.564
8 (in) 0.31 0.387 0.206 ‘ 0.29 ~ 0.6 e
Re 4,62 x 103\6 56 x 10° | 8.45 x 10° | 1,25 x 10%* 2,82 x 10*| 1.08 x 10°
V/u o(in) 1.66 x 10 311.09 x 1073] .69 x 163 .67 x 1073| .68 x 1072 | 1.32 x 16
Viulseey | 120 \51.6 24.0 22,5 23.0 0.62
(' /u)e 0.005 J - s 0.005 0.021 0.008
TABLEI

Mean Flow Parameters at Several Stations for Three Test Conditions
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u_ (ft/sec) 675 73 32,6
y y/8 y+ y/6* y+ y/8 y+
I 14757 | .85 |3600]1.28| 710 | .95 | 436
J |.,375" | .67 12840 1,01|560 | .75 | 344
—_— —1 K 1,275" | .49 | 2083 | .741410 | .55 | 252
—J L |, 175" | .313| 1325 .473| 261 | .350] 160
—K o |.075"|.134 | 568 | .203]| 112 | .150| 69
w = M J,025"]|.045]| 189 | ,068| 37 | ,050| 23

Fig.1
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Sketch of instrumentation lay-out including table of non-dimensional distances from wall
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COHERENT STRUCTURES IN TIME DEPENDENT SHEAR FLOWS*
Hermann Viets

Wright State University
Dayton, Ohio 45435

SUMMARY

The existance of large scale coherent structures in forced unsteady flows is demonstrated. The time
dependency is produced in the free jet case by a fluidically controlled flapping jet and in the wall bound-
ary layer case by a mechanical vortex generator. Advantages of the unsteady flows and similarities to"steady"
turbulent shear flow structure are discussed.

1. INTRODUCTION

The existence of coherent structures in turbulent shear f10w51 has greatly complicated the task of
mode1ling these flows. Since the use of local transport properties does not appear to be adequate, future
descriptions of turbulent flows will probably rely more heavily on phenomenalogical models. The flow may
then be based on some observations of its structure. A very simple example would be to model the coherent
large scale structure of a free jet by a number of vortices being convected downstream in a jet without a
large scale structure. f course, other difficulties arise; in part%cu]ar, the questions of how this struc-
ture 1s initially formed® and the geometrical relationships involved®.

The motivation, then, for studying unsteady flows is not only due to their own usefullness but also as
a guide to the modelling of "steady" flows. In particular, the purpose of the present paper is twofold:

1. Demonstrate some positive aspects of unsteady flow.

2. Produce flows in which the origin of the coherent structure is readily
identifiable, thereby perhaps simplifying the modelling task.

2. TIME DEPENDENT JET FLOWS

The introductlon of a time dependency_into free jet flows has been accomplished by various methods in-
cluding mechanical?, acoustic® and fluidic® means. The fluidic method is considered here and consists of a
feedback circuit which produces a jet which flaps from side to side®. The main advantage of this system

(as with all the unsteady jets) is a more rapid mixing of the jet with the surrounding fluid. The unsteady
jet nozzle employed here is shown in Figure 1 and described in detail in Ref. 6. The feedback loop is incor-
porated into the nozzle body to minimize the interference with the coflowing stream.

NOZZLE PLENUM FEEDBACK LOOP
\ CONTROL PORT

Figure 1. Schematic of the fluidically oscillating jet.

The large scale coherent structure in free shear layers, as demonstrated by Roshko and Brown’ (See also
Ref. 1), is difficult to model due to the lack of detailed understanding of its origin. Although it is clear
that the large scale structure is born in the turbulent shear layer, its growth and geometrical spacing have
not been predicted analytically. However, it has been shown that the scale must increase with streamwise dis-
tance? and that the spacing also increases by the amalgamation of adjoining structures3. A simpler problem,
from the modelling point of view, is the unsteady flow in which the origin of the largest scale structure is
more evident.

The large scale structure in the oscillating free turbulent jet is shown in Figure 2. The flow struc-
ture is visualized by entraining kerosine smoke into the open circuit low speed wind tunnel. The nozzle
exit is at the left and the flow is from left to right. The ratio of the coflowing stream to nozzle exit
velocity is .458. Although the jet is highly turbulent, the coflowing stream turbulence is low enough to
produce a visible study of the entrainment into a unsteady jet. With such a relatively high coflowing
stream, the amplitude of the jet oscillation is not large but the appearance of the large scale structure
is evident at various streamwise positions. At position A the large scale structure can only be seen with
some difficulty. By position B, the structure is a clearly defined mass of fluid which is rotating in the
clockwise sense. The distrubance has grown quite large by streamwise postion C.

& Partﬁa]]y Supported by AFOSR Grant No. 78-3525, monitored by Lt. George Catalano, AFFDL/FXM
Special thanks are due to Michael Piatt and Mont Ball for their assistance in the construction and per-
formance of the experiments.
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Figure 2. Smoke flow visualization of the oscillating jet in a coflowing stream of 45.8% of
the jet velocity.

If the coflowing stream velocity is reduced to 28% of the jet exit velocity, the magnitude of the large
scale structure is increased significantly as shown in Figure 3. Now the Targe scale structure is very evi-
dent at position A and the structure at position C has grown to the extent that it dominates the jet flow.
Perhaps even more interesting is the structure at position B where the turbulent flow is clearly rotating
in a clockwise sense. Since the flow is unsteady, the smoke lines are not streamlines but streaklines so
the interpretation is less 'straight forward. However it appears that of the two streaklines at position B,
the Tower one is deflected around the large scale structure while the upper streakline is being entrained
into the turbulent large scale structure which is the jet. This interpretation is verified by observing
the oscillation with a strobe Tight which s tuned so that there is a small frequency difference between
the strobe frequency and the jet oscillation frequency. Then the jet appears to flap in slow motion and
the rotational motion may be clearly seen. Thus, the large scale Ensteady structure behaves in the same
way as the Targe scale undriven flow structure described by Roshko% and entrains fluid on the upstream side.
A similar entrainment pattern for the turbulent wake has been found by Bevilaqua and Lykoudis8. The effect
may be seen for the Targer structure at position C in Figure 4 where the turbulent flow is entraining the
coflowing stream on the upstream side of the large scale structure.

Figure 3. Smoke flow visualization of the oscillating jet in a coflowing stream of 28% of the
jet velocity.

Returning now to Figure 2, it may be seen that the turbulent jet produces a large scale structure of

its own in addition to that produced by the time dependency. The peaks of smoke on the streaklines closest

to the nominal jet centerline all point in a downstream sense, in the same way as those produced by the time
dependent structure (position C of Figure 4). Thus, the turbulent unsteady jet produces a "steady" and an
unsteady large scale structure but the unsteady portion appears to dominate the flowfield. This may be some-
what analogous to the domination of the large scale structure over the fine scale turbulence in the "steady"
jet. Here "steady" is employed to indicate that the jet is steady in the gross view, while there is unsteadi-
ness associated with the turbulence structure.

Both the "steady" and unsteady large scale structures appear to arise through the same, or at least a
similar, mechanism. The jet produces a perturbation on its surface. This bulge in the surface grows into
a rotating mass of fluid with a vortex-Tike structure. In the "steady" case the origin and spacing of the
structure is not fully understood. In the unsteady case, the bulges are produced at a known position and
frequency and therefore may be easier to analyze.
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Figure 4. Smoke flow visualization of the oscillating jet in a coflowing stream of 28% of the
jet velocity.

3. MODELLING THE UNSTEADY JET

To understand the production of the Targe scale unsteady structure in the unsteady jet, it is useful to
construct a very simple phenomonalogical model of the process. It appears that the growth of the unsteady
structure greatly resembles the growth and subsequent breaking of a water wave. This may be seen by examin-
ing three positions of the developing large scale structure shown schematically in Figure 5a, where uj(x)

and u, are the jet and coflowing stream velocities, respectively. The original deformation of the free jet

surface is a relatively small amplitude wave. This wave travels downstream (left to right) at a velocity

c < < U is i i i 11
Uyave SU h that Ue Uyave u'J Therefore the wave is in a shear flow which causes it to curl in a

counter-clockwise direction and entrain fluid into_itself. Even without shear, it can be shown that the top
of the wave outruns the bottom and curling results”. After the curling up is completed, the vortex-like
structure continues to entrain fluid. The photographs of Figure 5b are taken from positions A, B & C of
Figure 3, where position B has been printed as it would appear on the upper surface of the jet. They clearly
verify the schematics of Figure 5a.

Figure 5. Evolution of the Jjet surface waves.

If one considers a breaking water wave, the schematic of Figure 5a correspong to the wave shape at
three instants of time, however with the wave traveling from right to left. Position A is the ear11eﬁt
swelling of wave. As the wave travels to the left, its forward face steepens and finally breaks as s owr::h
at position B. By position C the wave has broken and resemb1e§ a vortex 11ke‘structure. The energy oft_ $]
breaking wave is transformed partially into turbulence, which is eventually dissipated as heat, aq partially
serves to energize the undertowdwhich is the jet velocity itself in the present analogy. The analogy is

incomplete, however, because the water wave is driven by gravity and somewhat by viscous effects while the
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jet structure is entirely a viscous phenomenon. In spite of this, once the yisegs;ty_has cregted a vortex
sheet at the interface, the deformation of this sheet may be modelled inviscidly%»> with considerable
success.

The main poiqt then is not that the steady and unsteady flow structures are the same but rather that
they may have similar origins. As the unsteady structure grows from a Targe amplitude surface wave, so the
steady structure may grow from a small amplitude surface wave.

4.  QUANTITATIVE CONFIRMATION

_The unsteady fluidically controlled jet was examined in some detail by employing a hot wire anemometer
along with conditioned sampling of the data to reveal the time dependent character of the flowfield. The
jet was positioned between two Plexiglas sheets to attempt to minimize the three dimensionality of the field,
as shown in Figure 6. The hot wire anemometer was driven through the flowfield by a motorized traversing
mechanism which also turns a potentiometer, so the probe position is known at any time.

Band i
Signal = Amplifier ane > i
pass filter detector
triggering *
hot wirg Variable
probe N
\ . phase shifter

7 Plexiglas sheets X hot wire
probe

Suppression
filter

L signals J J

\ Bridge Bridge Amplifier

Schmitt
Ampiifier Ampiifier

trigger

Hot wire

probe 1 * !’
Suppression Suppresslon Dift .
filter fitter itferentiator
Linearizer Linearizer
* i Logic Input
Sum & Difference
u * v
D.C. Filter
Ampiifier Ampiifier Sample & Hold
to Hot Wire T e
Anemometer v X (Instantaneous)
Potentiometer for et
Motorized drive probe position v otter

Figure 6. Experimental setup for quantitative tests. Figure 7. Electronic circuitry for conditional
sampling with the hot wire anemometer.

The data required are the velocities in the jet at a specific instant of time (or alternately, at a spe-
cific point in the oscillation cycle, since the oscillation is repeatable). The conditioned sampling method
is shown schematically in Figure 7. A third hot wire anemometer is employed to indicate the position of the
jet since its signal is maximized when the jet is in the upward orientation. This signal is electronically
manipulated to produce a timing spike which activates a Schmitt trigger circuit and eventually a sample and
hold circuit. Thus the sample and hold only accepts a signal from the two channel hot wire probe when the
jet is in a predetermined orientation. This orientation may be changed at will due to the presence of a var-
iable phase shifter. The probe can then traverse across the jet and only record the velocities with the jet
in a single orientation, neglecting all others.

The data obtained by the above technique have been reported in some detail in Reference 10. The aim
here is to investigate quantitatively the existance of large scale coherent structure in the jet as appears
to be evident in the flow visualization experiments described above. Looking back at the schematic of the
unsteady jet field in Figure 1, a growing sinusoidal wave traveling downstream, where should one look for
the existance of the vortex structure observed in the smoke photographs? The question is answered by another
look at the model of Figure 5. As the bulge of the jet flow curls up to creaté a vortex structure, it nec-
essarily does so by breaking toward the upstream direction (as driven by the slower coflowing stream or am-
bient fluid). Thus the vortex produced would be expected to exist at a position somewhat upstream of the
initial jet bulge, which in this case is the extreme off axis position of the instantaneous jet centerline.

A portion of the jet flowfield, for the case of a frequency of 18 Hz and an extreme downward orienta-
tion of the jet at the nozzle exit, is shown in Figure 8a. The lengths of the arrows are proportion to the
local velocity and the angles are determined from the measured axial and transverse velocities. The instan-
taneous jet centerline is also shown, from which it may be estimated that if a vortex is present, it should
be centered roughly between 16 and 22 jet diameters downstream. No vortex-like structure is evident in this
region.
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Several investigators have shown, however, that in order to see the coherent motion of a group of
particles, the observer must be travelling with the velocity of the center of mass of those particles. Prob-
ably the first examination of this effect was made by Prandtl!lwho photographed a boundary layer by travel-
ling at various speeds relative to the flow. Each photograph then revealed a different. coherent structure.

In order to see the structure in the flowfield of Figure 8a, a nominal velocity of the vortex center is
assumed and that streamwise velocity subtracted from each of the data points in the field. The result is
shown in Figure 8b and clearly shows a vortex Tlocated in the very region where one would expect it based on
the flow visualization results presented above.

Based on the phennominological model of Figure 5 and the quantitative results of Figure 8 one can then
make more predictions of the location of Targe coherent vortices in a family of instantaneous jets as shown
in Figure 9. The 12 Hz frequency jet is shown for three phase angles, 90°, 180° and 270° or horizontal
(sweeping top to bottom), extreme downward or horizontal ({sweeping bottom to top) orientation, respectively.
The centerline positions of the jets are based on quantitative results. The vortices are drawn in the posi-
tions where they might be expected to be found based on the previous results.

Searching at the three positions closest to the nozzle exit, A, C and E leads to the conclusion that
coherent vortices do not exist at those positions. This is, however, entirely consistent with the model
proposed in Figure 5. It is clear from the flow visualization experiments that it takes some time (or equiv-
alently, distance) for the bulge on the jet to curl up into a coherent structure. The positions near the jet
exit have simply not allowed enough time (or distance) for this process to take place.

Looking for the vortex B, the Tocal jet velocity field is shown in Figure 10a. Assuming the vortex cen-
ter to exist at roughly x = 22 and subtracting the streamwise velocity at that point results in the Figure
10b, where the vortex structure is evident. It should be emphasized, of course, that the Tocal structure
depends upon the velocity of the observer, so subtracting a somewhat different velocity will result in a
somewhat different appearance of the vortex. However, the important fact that the vortex is there is clear
in any case.
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The local velocity field for a phase angle of © = 180° is shown in Figure 11a. Again no vortex struc-
ture is seen until the flow is observed from a moving coordinate system as shown in Figure 11b. The vortex
appears to be centered approximately at x = 10. Looking back at the schematic of Figure 9, it may be seen
that vortices A, D and F are really one and the same vortex at successive times. Thus an indication of the
translational speed of the vortex can be obtained by locating the vortex F, having already found vortex D.
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Figure 11a. Jet velocity field at a
frequency of w=12 Hz and a
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/
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in a moving coordinate system.
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The jet flowfield in the region where vortex F is expected is shown in Figure 12a. In a moving coordi-
nate system, the coherent structure of the jet may be seen in Figure 12b. The vortex center is located at
approximately x = 22. Then the translational velocity of the vortex between the positions D and F of Figure
9 is

v = M (22-10) 1724 ft -
time  (1/12 sec/cycle) (1/4 cycie)

ft/sec. = 7.3 w/sec

The instantaneous centerline velocities corresponding to the locations of vortices D and F are 11.5 m/sec
and 10.8 m/sec, respectively. It should be noted, however, that the vortex translational velocity is only
an approximate value because the determination of the vortex locations is not precise. A composite view
% the streamwise velocity distribution corresponding to the jet in Figures 12a and b is shown in Figure

c.

T T = Instantaneous
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Figure 12a. Jet velocity field at a i //
frequency of w=12 Hz and a e e .
phase angle of 0=270°.
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P - W =12 Hz /
@ =270 /
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Instantaneous
jet
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Figure 12b. Coherent structure of Vortex F
in a moving coordinate system.

%10 — | \
2ro° X=14 X=18 X=22 X=30 X=40

Figure 12c. Composite view of the streamwise velocities in the unsteady jet
for w = 12 Hz and & = 270°

Further evidence of the existance of a large scale vortex structure in the unsteady jet may be found
in the instantaneous decay of the jet centerline velocity. 1In the case of steady jets, the centerline ve-
locity decay is a monotonically decreasing function of streamwise distance. In the unsteady jet case, the
centerline velocity decay (where the centerline is a quasi-sinusoidal shape) has a typical behavior!0 shown
in Figure 13. The velocity decays with streamwise distance, reaches a local minimum and starts to increase
again. A peak is reached, where upon the decay begins anew. The location of the peak corresponds to the
existence of a vortex at that position, as illustrated in the inset to Figure 13.

Considering the induced velocity distribution due to the vortex and superimposing that velocity on a
monotonically decaying centerline velocity results in the typical distribution of Figure 13. Thus the vis-
ual observation of a vortex structure in the unsteady jet is consistent with the quantitative measurements,
specifically the instantaneous velocity structure and its centerline decay.

f=18 Hz
0=270°

Figure 13. Effect of the vortex structure
on the instantaneous jet
velocity decay.
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5.  UNSTEADY BOUNDARY LAYER ENERGIZATION

The use of unsteady flow to energize the boundary Tlayer flow has been accomplished implicitly for some-
time. If one considers the difference between typical laminar and turbulent boundary layer profiles, the
turbulent profile is fuller near the wall. That is, the velocity at a given position above the surface is
greater in the turbulent case than in the Taminar case. The difference was ascribed by Prandtl to the tur-
bulent interchange of momentum between the various Tayers of flow. This turbulent flow of momentum across
streamlines is a time dependent process which can be improved by external stimulation and/or the production
of a large scale structure.

The mechanical method employed here to produce a time dependency in the boundary Tayer is shown in Fig-
ure 14. It consists simply of a cam shaped rotor which rotates in a counter clockwise sense and thereby pro-
duces a clockwise vortex with each passing of the discontinuity in the rotor surface. The vortices are swept
downstream by the flow but their presence causes an increased transfer of momentum from the free stream to
the’ Tower reaches of the boundary Tayer. The flow is capable of overcoming a stronger positive pressure
gradient without separation, as has been shown in Reference 12 for the case of a two dimensional rotor.

The objective here is to examine the usefulness of a three dimensional rotor geometry and to investigate
the effect of rotational direction on that jet.

Figure T4. Rotor geometry for boundary
layer energization.

r=1125in

The initial motivation for the rotor device was to produce a flowfield similar to the flow above an
oscillating airfoil and thereby to improve the Tife on a stalled airfoil. Positive results on this appli-
cation are given in Reference 13. The method was subsequent]y applied to a rearward facing step with
potential application to improve mixing in a dump combustor !4,

_

Figure 15. Smoke flow visualization of the i - - /////'//2

vortex generation process, w=3000 rpm.

7

-+ 3000 rpm
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The actual production of a vortex by the rotor geometry is shown in the photographic sequence of Fig-
ure 15. In this case the rotor size is4.76 cmand it is turning in a counter-clockwise direction at 3000
rpm in a flow moving from left to right at 25.0 m/sec. The rotor produces a vortex-like structure which
can be seen even more clearly by the use of strobe almost synchronized to the rotor speed so that it pro-
duces a slow motion version of the flowfield. The field itself is highly repeatable and can even produce
an apparently standing vortex by means of synchronizing the strobe. It is important to note that the rotor
does not operate simply as a trip mechanism. The time dependence is important because it concentrates the
vorticity and thereby makes it more effective in terms of energizing the boundary layer. Also of importance
is the fact that the rotor tip is moving in an upstream direction, so that the rotor is not simply pushing
the flow downstream. The rotor apparently supplies only the energy required to bring some high energy ex-
ternal flow down into the boundary Tayer.

The present experiments are concerned with a three dimensional rotor which is, on the flow centerline,
the same dimension as the diagram of Figure 14. However, as one moves away from the centerline (i.e. into
or out of Figure 14) the size of the rotor tapers to zero at a transverse position of 3.6 cm from the center-
Tine. Another difference is that there is no undercut in the rotor shape but the discontinuity in the rotor
shape is merely a straight step. The subsequent flow visualization results and pressure measurements are
all made on the centerline of the flowfield.

Figure 16. Flow separation at the ramp for no rotor.

" = 1000 rpm "~ w =-1000 rpm

" w=2500rpm " @ =-2500rpm

©=28°
TAPERED ROTOR

Figure 17. Comparison between rotor motion in the upstream (+) and downstream (-) directions
for w=1000 and 2500 rpm, and a tapered rotor.
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" = 5000 rpm "~ =-5000rpm

©=28°
TAPERED ROTOR

Figure 18. Same as Figure 17 for w=4000 and 5000 rpm.

The effect of the magnitude and direction of the rotation speed on the ability of the flow to remain
attached to a 28° ramp is shown in Figures 16-18. The detached flow for the case of no rotor is shown in
Figure 16. The flow separates immediately at the beginning of the vamp. The nominal velocity at the top
of the ramp is 32 m/sec. The photographs in Figures 16-18 are taken with a sufficiently Tong time exposure
so that the results are essentially a time average of the flowfield and hence are average streamlines.
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Figure 19. Pressure rise down the ramp Figure 20. Pressure rise down the ramp
for + 1000 rpm and a tapered for + 5000 rpm and a tapered

rotor. rotor.



~ w=2500rpm "~ w=-2500 rpm

©=28°
TAPERED ROTOR

Figure 21. Streaklines in the ramp flowfield for a tapered rotor moving in the counter-
clockwise (+) and clockwise (-) directions.

In Figure 17 the comparison is made between rotation in the counter-clockwise (+) direction and the
clockwise (-) direction for speed of 1000 and 2500 rpm. The direction of rotation does not appear to be
a major effect, but the rotation has not yet caused to flow to turn the corner very effectively. With an
increase of rotational speed to 4000 and 5000 rpm, the effect of the rotation direction becomes very pro-
nounced. In particular, at w = #5000 rpm the effect is very strong, resulting in a fully attached flow for
a counter-clockwise rotation and a fully separated flow for a clockwise rotation.

The time average pressure distribution on the raip are shown in Figures 19 and 20 for two sets of ro-
tational speeds, +1000 rpm (Figure 19) and #5000 rpm (Figure 20). At the lower rotational speeds, the pres-
sure rise on the ramp is rather small and only weakly affected by the direction of rotation. This is incon-
sistent with the results of Figure 17 and indicates that the frequency of vortex generation is too Tow to
achieve sufficient boundary layer energization to allow the flow to remain attached. Changing the direction
of rotation (at the same w) keeps the frequency of vortex genmeration unchanged but changes the strength of
each vortex because the relative velocity between the stream and the rotor is changed. However, since the
frqueqcy]of generation is insufficient for attachment even with the counter-clockwise rotation, the effect
is minimal.

At higher rotational speed, however, the effect of rotational direction is very significant as shown in
Figure 20 for the case of *5000 rpm. The counter-clockwise rotation (+) produces the stronger vortex and leads
to a higher pressure rise on the ramp. This result is a reflection of the improved flow attachment on the ramp
and verifies the flow visualization results of Figure 18.

The details of the flow structure may be seen in the streakline photographs of Figures 21 and 22. In
this case, the photographs are taken with a single flash strobe and thus yield the instantaneous positions of
the entrained smoke or streakline. The interpretation of streakline patterns is more difficult but can be
guided by observations of their dynamic behavior as observed with a tunable strobe light. The results at the
lower rotational speeds, Figure 21, verify the results of Figure 17 in that the effect of rotation direction
is not very strong and indeed, the ability of the unsteady energization to cause the flow to remain attached
is rather limited. However, at larger rotational speeds, Figure 22, the effect of rotor direction is very
pronounced, leading to a very strong vortex structure and a successful attachment when rotated in the counter-
clockwise (+) direction. When rotated in the clockwise (-) direction, the strength of the vortices produced
is greatly reduced (since the relative velocity is reduced) and the resulting flow is not well attached to
the ramp.
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Thus the time dependent method of boundary layer energization appears to show promise from the point of
view of application. Rotation in the upstream direction (+) direction is desirable to maximize the relative
velocity between the rotor and freestream and thus maximize the vortex strength. Three dimensional rotors
show the same promise but additional data is needed on geometrical effects.

" = 5000 rpm N W = 5000 rpm

©-=28°
TAPERED ROTOR

Figure 22. Same as Figure 21 for higher rotor speeds.

6.  CONCLUSION

The existence of Targe scale time dependent flow structures in forced time dependent shear flows is dem-
onstrated. These structures dominate the flow and make possible the observed performance improvements of some
unsteady devices. Because of the more readily definable structure, unsteady flows could be employed to study
the structure of nominally steady flows from a modelling point of view.
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AN INVESTIGATION OF THE STRUCTURE OF EQUILIBRIUM TURBULENT BOUNDARY LAYERS
by

L. F. East
Aerodynamics Department, Royal Aircraft Establishment, Farnborough, Hampshire, England

and

W. G. Sawyer
Aerodynamics Department, Royal Aircraft Establishment, Bedford, Bedfordshire, England

SUMMARY

The paper presents details of seven low-speed equilibrium boundary layer flows rang-
ing from mildly favourable pressure gradients to adverse pressure gradients almost suf-
ficient to cause incipient separation. The flows are turbulent and second and third order
correlations of the turbulence are included in addition to measurements of the mean flow.

The flow parameters are shown to be consistent with existing equilibrium loci. It
is also shown that the law of the wall applies to all the flows and that therefore the
value of von Karmdn's 'constant' in the mixing length formulation of shear stress must
vary. The data strongly support the concept of gradient diffusion and it is demonstrated
that for flows in strong adverse pressure gradient the shear stress gradient results from
the strong diffusion of turbulence towards the wall and not from changes in the dissipa-
tion term. Thus although the mixing length is dependent upon pressure gradient the dissi-
pation length is not.

LIST OF SYMBOLS

Cf skin friction coefficient, Uref reference velocity
2
= 1
Cf B Tw/sze U,V,W veloeity components of turbulence
CT maximum shear stress coefficient, X streamwise coordinate measured from
C . 1T the start of the test section
= 2
t max © XO virtual origin of equilibrium flow,
Ee equilibrium friction parameter, K= XO CigR 82 (0
Ef = Cf/ZJ2 X streamwise coordinate of equilibrium
. . flow
Ep e pressurg i o ch coordinate normal to the surface
= *
meter, EP (6x/J Ue)dUe/dX Y intermittency
G equilibrium parameter, 8 boundary layer thickness,
G = (H - 1)/(H/Cg/2) y =6 at U/Uu, = 0.995
e o = (H -1)/(H/C 72) 8% displacement thickness
T T B T 8
max max g% = é; [ (U, - May
H shape parameter, H = 8*/@ e O
h time-dependent mixing length 8 momentum thickness
RN . 8
J equilibrium shape parameter, | _
I - (H - 1)/H 8 == é u(u, - Udy
k von Karmin's constant €
P . T pressure gradient parameter for
L dissipation length scige equilibrium flows,
- 2 2 du
2 mixing length, &~ « h = -, e
L QU T (28*/C.Us) =%
. el S SRR U; ax D fluid density
P probability T shear stress
q resultant turbulent velocity, Tmax Dl
q2 = u2 + v2 + w2 T shear stress at the wall
U mean velocity in x direction
Ue mean velocity external to the
boundary layer
1 INTRODUCTION

All prediction methods for turbulent flow are dependent on general analytic or num-
eric representations of the properties of turbulent flow. Ideally these generalised
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representations should be obtained by curve-fitting reliable experimental data which

cover a sufficiently wide range of conditions to encompass the flows to be predicted.
Normally such an 1deal is not achieved, particularly with the more sophisticated methods
which require empirical information that is more difficult to measure (or even impossible
at present) and is consequently neither widely available nor of high accuracy. These pre-
diction methods tend to be based on data correlations obtained in relatively simple flows,
for which the most numerous and reliable data are available, and are then applied to more
general flows of practical interest.

The flow for which far and away the most data are available is the so-called 'flat-
plate flow' both at low and high Mach numbers. Such data can give information on the
effect of Reynolds number and Mach number as well as the relationship between turbulence
stress and the mean properties of the flow. However the range of conditions covered by
flat plate data is very narrow and in particular none of the very important effects of
pressure gradient is present. A family of flows which includes some of the effects of
pressure gradient is that of the so-called 'equilibrium flows' 1,2,3 in which pressure
distributions are selected such that the boundary layers grow with approximately similar
profiles of velocity and shear stress. Although equilibrium flows have been used extens-
ively to supply empirical information there is still a shortage of reliable data.
Clauser 2 measured two flows in adverse pressure gradients and his work was extended by
Bradshaw 3 who studied the turbulence structure in a corresponding pair of flows. There
are also the data of Stratford 4 who studied a flow in which conditions were maintained at
a point of incipient separation. The present work was undertaken to provide a greater
set of equilibrium data than is presently available for attached flows and it is intended
that the work should be extended to include equilibrium separated flows.

A general description of the experiment is given in section 2 and the data obtained
are presented in section 3. The characteristics of the mean flow and of the turbulence
structure are discussed in sections 4 and 5 respectively. Related to the discussion of
turbulent diffusion in section 5 is an extended mixing length formulation which is given
in the appendix. A more detalled account of this work is given in Ref 5.

2 EXPERIMENTAL DETAILS

The general problem of setting up a turbulent equilibrium flow has been discussed
at length in the literature (see for instance Refs 1, 2 and 3). Although in theory it is
not possible to set up an equilibrium flow without using a surface of varying roughness,
in practice flows acceptably close to equilibrium can be obtained without great difficulty.
For the present purposes a two-dimensional turbulent boundary layer in incompressible flow
is deemed to be in equilibrium if it satisfies the following conditions,

(a) U, = x"  where Ug is the velocity external to the boundary layer, x 1s the axis

measured along the surface in the streamwise direction and m 1is a constant para-
meter of the flow

(b) ® * x where o 1s the momentum thickness of the boundary layer. It is important
to stress that the virtual origin of x in (a) and (b) must be the same.

(ec) The shape parameter, H , is constant or dropping slowly as the Reynolds number
increases.

The equilibrium flows were set up in the boundary layer tunnel at RAE Bedford which is
an open return blower tunnel with a nominal speed range of 0-50 m/s. The Lesl section is
5.4 m long with inlet dimensions of 1.2 m wide by 0.3 m high. The roof of the test section
is constructed of ground plates of aluminium alloy and is fitted along its centre line with
thirty-three 90 mm diameter removable blank plugs at 150 mm spacing. A row of static tap-
pings is also positioned on the centre line between the removable plugs. The plugs can be
replaced by others mounting traverse gears and other forms of instrumentation. The lower
surface is constructed of a flexible sheet of fibreglass and its position is maintained by
3% manually operated jacks. The movement of the lower surface is such that the height of
the tunnel can be reduced to 150 mm and increased to 750 mm which enables a wide range of
pressure distributions to be imposed on the flat upper surface where the boundary layer
measurements are made. The flexible floor is not sealed at the junctions with the side
walls and there are gaps of up to about 1 mm wide.

Like Clauserzi we experienced some difficulty in setting up two-dimensional flow in
adverse pressure gradients. The flow was found to break away completely from one or other
side wall. To overcome this problem screens were placed at the outlet of the test section
of sufficiently high resistance to ensure that the pressure throughout the test section
was above the atmospheric pressure. Under these conditions there was outflow at the cor-
ners between the flexible floor and the side walls and two-dimensional flow was obtained.
It is difficult to be certain about the two-dimensionality of a flow and as an aid tufts
were permanently attached to all four surfaces of the test section and provided a ready
indication that the flow was running full and approximately parallel with the tunnel axis.

It is a characteristic of equilibrium boundary layer flows that for negative values
of m , corresponding to adverse pressure gradients, two flows having different values of
shape parameter and rates of growth are possible2, . If the divergence of the duct is
greater than that required to provide maximum adverse pressure gradient (minimum m ) then
two distinct duct flows are possible. Either the symmetry of the flow will be retained,
with the top and bottom boundary layers both reaching a value of shape parameter higher
than that corresponding to minimum m , or the flow will become asymmetric with the shape
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parameter of one of the boundary layers greater than, and that of the other less than,

that for minimum m . Consideration of the corresponding rates of growth of the boundary
layers shows that, for a given duct divergence, the asymmetric flow produces less pressure
recovery and is therefore the stable solution. For turbulent flows the maximum adverse
pressure gradient corresponds to an attached boundary layer and there is therefore a

range of duct divergence in which the flow will be asymmetric but both boundary layers

will be attached. In the present tunnel configuration it was found that in this range

of conditions the flow with the higher shape parameter always developed on the flexible
floor so that the value of the shape parameter of the boundary layer on the test surface
was limited to the value corresponding to the maximum adverse pressure gradient. This
preferred orientation of the asymmetric flow, which probably resulted from the effect of the
curvature of the flexible floor near the inlet to the test section, was reversed by placing
delta type vortex generators at the inlet to the test section on the floor and side walls.

Seven equilibrium flows have been studied. In flows 1 and 2 the pressure graqient
is favourable and is zero in flow 3. In the remaining four flows the pressure gradient

is adverse.

The actual shape of the flexible floor was calculated from a one-dimensional analy-
sis, such that in the absence of boundary layers

e

by selecting a series of values of R (actually 0.2 steps from -0.8 to 0.4). The values
of m that were measured differed considerably from the prescribed R but as will be
shown in the next section this method of setting up gave at least 1 m and generally more
than 2 m of closely equilibrium flow.

Profile data were obtained with pitot tubes and hot wire probes. The pitot measure-
ments were made with a round probe of 1.13 mm outside diameter and a displacement correc-
tion of 0.15 diameters has been applied to all data given in this paper. A limited num-
ber of traverses were also made with a static pressure probe and these showed.that in all
cases the normal pressure gradient was negligible. Turbulence characteristics were
measured with an X hot-wire probe from which mean velocity and second and third order
turbulence correlation terms have been deduced. Because of the high turbulence levels in
some of the flows the hot-wire signals were first linearised before being processed in
analogue form.

3 EXPERIMENTAL RESULTS

The characteristics of the seven flows are shown in Figs 1 to 4. In Fig 1 the
external velocity distributions are plotted for flow 1, which has the most favourable
pressure gradient, and for flows 5 and 7, which are characteristic of the flows with
adverse pressure gradients. Also shown in Fig 1 are the fitted curves of the form

U_/U

m m
e/Vpep ¥ % (X - XO) (1)

where the coordinate X i1s measured from the start of the test section and X5 1s the
effective start of the equilibrium flow and hence the origin of x . The curves were
obtained by fitting a straight line to plots of 1n U against 1n(X - X.) using the
values of Xy determined from the growth of the momentum thickness 8 “shown in Fig 2.
It will be noted that for X > 3m the growth of & 1is approximately linear in all cases.
The corresponding distributions of shape parameter H and skin friction coefficient Cg¢
are shown in Figs 3 and 4. The values of Cp used in Fig 4 have been deduced by fitting
velocity profiles to the law of the wall. These figures show the considerable length of
flow required to achieve steady conditions particularly if the shape parameter H is
high. It will also be noted that flow 7 is close to incipient separation.

For each flow the profile at X = 3858 mm has been selected as typical of the
equilibrium flow as a whole. The mean velocity profiles deduced from the pitot tube
measurements are plotted in Fig 5 and in Fig 6 they are given in log-linear coordinates.
The normal coordinate, y , 1s plotted in Fig 5 in the non-dimensional form of y/x as
this illustrates very clearly the very great thickness of the layers as H increases
(eg compare 7 with 3 which is flat plate).

The log-linear plots in Fig 6 illustrate that the profiles exhibit a substantial
linear region and it will be seen that even flow 7 appears to follow the law of the wall
up to y/6 = 0.1 and for most of the flows the law of the wall is closely followed up to
at least y/8 =~ 0.2. This point will be referred to later in section 5 where the corres-
ponding distributions of shear stress are discussed.

Fig 7 shows that the flow in the outer part of the boundary layers is similar for
all the profiles, in the sense of having a common form for the intermittency factor
proposed by Sarnecki?. The intermittency factor, vy , is defined by

U = yUt + (1 - y)Ue R

) being the velocity given by the law of the wall, and is plotted in Fig 7 against a
noérmalized coordinate chosen to have a value 0.5 for y = 0.5,
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il EQUILIBRIUM LOCUS

The equilibrium parameters are normally designated G and = ,

where G = H ; 1 /;i (2)
L 'J\Jf
and
. . - 28% dUg ' (3)
Cer dx

In the general consideration of laminar and turbulent equilibrium layers given in Ref 6
it is pointed out that these definitions are unsultable for seperated flows and that
equivalent, but more general, parameters are an equilibrium friction parameter, Ef 5
defined by

2
HeC c
-2 £ 7
E. = @ = = €]
£ 2(H - 1)° 272

and an equilibrium pressure gradient parameter, Ep , defined by

E = 1/G° = _( H >2<§_*%> R L (5)
p H-1 U_ dx J2Ue dx

where J = (H - 1)/H may be regarded as an equilibrium shape parameter which was intro-
duced in Ref 6 and will also be used in this paper.

Fig 8 gives the equilibrium locus plotted in the form of Ef against E and in
addition to the present data, Bradshaw's 3 data are included together with the calculated
locus of Mellor and Gibson 8. The straight line shown is the empirical equilibrium locus
proposed by Green et al 9 which takes the simple form in the present coordinates of

B, = 0.024 - 0.8 Ep . (6)

Clearly the present data are consistent with the existing information and support
the simple linear relationships of Green et aql although the constants could be modified
to give a slightly better fit.

5) TURBULENCE STRUCTURE
5.1 Shear stress profiles

A selection of the turbulence data is reproduced in Flg 9a—c. For each flow Fig 9

gives two graphs, the upper one shows the distribution of (u + v )/U and - uV/U2 and
the lower one shows the distribution of the turbulence diffusion veloclty of these quan-

tities in the y direction, that is (u + v3)/(u + v2)U and uvz/uvUe . Throughout
this section it will be assumed that the terms arising from the w component of the tur-
bulence, which was not measured, can be approximated by

C 2) and w2v =~ % (u2v + VB) . (7)

The turbulence kinetiec energy % a can then be approximated by

éé = e % (u + V2) (8)

™ol
v =

and the diffusion of kinetic energy is given by

qzv/que o (u2v + VB)/(uE + v2)Ue . (9)
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Also, throughout this section, the density will be omitted and (-uv) will be referred to
as the shear stress and 1q2 as the kinetic energy. This shorthand is acceptable as
the quantities are always presented in a non-dimensional form and the flow is incompress-
ible. The well-known characteristics of the shear stress profile are clearly evident in
Fig 9. As the shape parameter increases the shear stress decreases at the wall and
increases further out in the boundary layer. The magnitude of the maximum shear stress
is a feature which characterises the shear stress profile and is shown plotted against J
in Fig 10. In Fig 10 it is shown that /5; varies linearly with J , where C_ is the
maximum stress coefficient defined by CT = Tpax %pUg . It follows that a function G
based on the maximum stress can be defined which will be constant for all the flows and
equal to the flat plate value. Thus

e S : S S P S = 6.55 (10)

Tmax H/C /2 H/C /2

flat plate

specifies the straight line in Fig 10.

There is some arbitrariness in the values of C. - for flows 1-3 according to where
Tmax 18 evaluated. The actual maximum value of +t_ occurs at y = O but as a measure
of large-eddy activity in the layer, Bradshaw et_al take the value of =t at
y/8 = 0.25. As shown in Fig 10 the effect on /6; is quite small for the flows studied

though it may be expected to increase in stronger favourable gradients.

5.2 Mixing length representation of shear stress

The most commonly used representations of shear stress in prediction methods are
based on eddy viscosity and mixing length formulations. In the mixing length model the
shear stress is expressed as,

~2tavu|/au)

where the mixing length, & , is generally assumed to be a function of y across the
layer. The simplest forms of & outside the sublayer region approximate to

& = 0.4y for y/§ < 0.2
and
0.088 for y/& > 0.2

o
[}

For flows in which =+t varies considerably across the inner region it is clearly imposs-
ible for both the mixing length model as formulated above and the linear log-law to hold.
This is because the linear log-law implies that

o 7o\
21duj{du
wo = Pt ay(ay) (12)

which is inconsistent with the mixing length equation unless 1t = Tyt

This point has been extensively studied by Galbraith and Head:ll and by Glowacki
and Chil2 ., In Ref 11 it is demonstrated that the linear log-law is the more universally
valid and that the mixing length varies from flow to flow. The same result holds for the
present data for it has already been shown in Fig 6 that the log-law appears to hold for
all the data and Fig 11 shows the consequent trend in the mixing length in the inner
region of the boundary layer. Over the outer part of the boundary layer no systematic
trend is evident and the curves are shown coalescing onto a single curve. The mixing
length has been deduced from the measured shear stress and mean veloclty profiles and
although there is considerable scatter in the data the trend shown in Fig 11 is unmistak-
able., Various devices have been proposed in the literature for modifying the mixing
length in the wall region 80 ag to recover the law of the wall of which the most direct
method is to redefine von Karman's 'constant', k , in the inner region as

k(y) = O.MVT/TW

while retaining an unmodified mixing length in the outer part of the flow. Rather more
approximate is the procedure of Ref 12 in which an average value of k 1is assumed across
the inner layer which is a function of the pressure gradient parameter =



5.3 Turbulence rate equations

To proceed further with the analysis of the turbulence data it is necessary to
establish a theoretical framework. The most appropriate framework is provided by the rate
equations for turbulence shear stress and kinetic energy which can be deduced from the
Navier-Stokes equations and are used in approximate form in the more sophisticated pre-
diction methods.

For a two-dimensional incompressible turbulent boundary layer the rate equation for
turbulence shear stress is

D - AL, B TN TF TR
5e (- uv) = v & +-§§(uv + _5¢> vuvev + vvu St ey (13)
Advection Production Diffusion Viscous dissipation Pressure strain
and for turbulence kinetic energy is
D (42 —av _ o (v . 75 SCIRE R
BE\ D = (- UV)E _WT+—Q- +\)(uV'u+VV v twv W) (14)
Advection Production Diffusion Viscous dissipation

The production and diffusion terms in these equations have been evaluated from the data
and are analysed in sub-sections 5.4 and 5.5 respectively. Although neither the viscous
dissipation nor the pressure strain terms can be evaluated from the data some interesting
deductions can be made in relation to the turbulence structure in the wall region if the
approximate analysis of the rate equations by Bradshaw is followed through.

g an accident of history associated with the fact that the method of Bradshaw
et al 10 was first derived for two-dimensional flow from the kinetic energy (a scalar
quantity) equatlon and then extended to three dimensions 13 by approximating the rate
equations for (-uv) and (-vw) (vector gquantities), Bradshaw 13 had to reconcile his
derivations of a useable rate equation for shear stress from both of the above equations.
In doing this he assumed that

GET/p < uv2 and vp'/p < vq2/2

and that

e = == = a; = 0.15 (15)

throughout the flow. It will be noted that the pressure strain term appears only in the
shear stress equation and it was therefore necessary for Bradshawl3 to reason that the
pressure strain term could be regarded as comprising a direct destruction of shear stress,
analogous to viscous dissipation, and of a negative production which opposes the genera-

tion of shear stress by the term Vv %g . With these assumptions the following equation
for shear stress ig obtaincd
— U= )t >
D[- uv _ _ ==y dU _ (- uv _ 9 (- uv
*Dt<‘——2al> = W gy _3y< 2al> ; (16)

where I is the dissipation length scale and was chosen to be very similar to the mixing
length & over most of the boundary layer. Equation (16) forms the basis of the analysis
given in section 5.6 of the wall region of the flow.

5.4 Turbulence production

The turbulence production terms have been evaluated from the measured mean flow and
turbulence profiles and are given in Fig 12 for shear stress; the curves for turbulent
kinetic energy are very similar but differ in magnhitude. The curves show that as the
shape parameter of the boundary layer increases the region of maximum production moves
away from the wall to the middle of the boundary layer. This is a well-known fact and
correlates with the trend of the maximum shear stress as shown in Fig 9.

However, Fig 12 shows that as H increases the region of maximum production does
not move uniformly away from the surface but rather that there are two regions of high
production and the shift 1s achieved by progressively increasing the production at one
region and reducing it at the other. The regions are in the immediate vicinity of the
wall, where the velocity shear can be very high, and in the middle of the layer. Thus for
flows 1 and 3 very high levels of production are indicated near the wall but these levels
rapidly fall and the production over the outer part of the layer is very small. By
contrast the production in flow 7 reaches a maximum in the centre of the layer and falls
to a low level near the wall, Intermediate flows 4, 5 and 6 combine both the above
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distributions (say 3 and 7) in varying amounts and it is noticeable that in flows 5 and 6
the distributions of production do exhibit a pair of maxima.

5.5 Turbulence diffusion

—
The diffusion terms in the rate equations are respectively - g%(g%— + X%—) and
j%(uva up ’ and are important because diffusion is the process by which turbulence is

transferred from one mean stream line to another and in particular controls the growth,
by entrainment, of boundary layers and shear layers. The pressure diffusion term cannot
be measured at present and so the evaluation of the diffusion terms is restricted to the
triple correlation terms uv2 and q2v . The diffusion velocities in the y direction
(uv2/ﬁVU and q2v/q2U ) have been given in Fig 9 and clearly show widely varying char-

acterlstlcs over the range of flows studied.

In the Appendix a simple mixing length argument is used to derive forms for the
turbulent diffusion terms. Two principal terms are derived for the diffusion, one related
to the turbulence itself and the other related to the gradient of the turbulence level, so-
called gradient diffusion. The general form of the diffusion shown in Fig 9 is clearly
more likely to fit the gradient diffusion concept and as shown in Figs 13 and 14 the data
are quite well predicted by the following equations,

— 3 _
uw? = 22%(— ﬁ)’ . (1)
and
o 4 {2\
v = -o.uﬁ(q ) . (18)

In these relationships the length scale, & , has been taken as the normal mixing length
and, for numerical convenience, is expressed in terms of " y/8 by the following equation,

8/8 = 0.075(5Y/6)[(5y/5)2 + 1.]/[(537/6)3 + 1] . (19)

The process of diffusion is important in turbulent flow but should not be thought
of as the automatic result of the presence of turbulence or even of the presence of a
finite Reynolds stress. It is a statistical property that odd-order correlations are all
zero if the joint probability of the velocity components of the turbulence is symmetrical
and only the even-order correlations are in general non-zero.

Thus if the joint probability p(u,v) has the symmetric property that
p(u,v) = p(-u, - v) , (20)

then the general expression for the (r + s) order correlation,

o -]
Wy - [ [ p(u,v)urvsdudv (21)
-0 00
reduces to
o« o©
utvs o= 2 f f p(u,v)uFvidudv
0 ~o
if (r + s) is even
and
u 5 a 0

if (r + s) is odd.

These results show that whereas a finite Reynolds stress (r=1, s=1) can be obtained
with a correlated but entirely symmetric probability distribution (eg Gaussian) it is essen-
tial if diffusion is to occur that the turbulent motion is such as to produce a skewed
probability distribution. This makes the prediction of diffusion difficult as it is a
function of the fine detail of the turbulence rather than its overall characteristics.

On the other hand this general result is entirely consistent with the known characteris-
tics of intermittency and the entrainment of laminar flow which is physically the main
process by which diffusion is thought to operate in the outer part of the layer. The
phenomena of intermittency may be expected to give rise to a strongly skewed probability
distribution.
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According to the simple mixing length model given in the Appendix there are two
processes that can lead to a skewed probability distribution and hence diffusion. In
general terms the fluctuating velocity, u , is assumed to result from fluid arriving at
the measurement point from regions of the flow with different mean velocities. Hence the
general form of the fluctuating veloeity, u , is,

u(y,t) ulh(y,t),U(y)]

where h dis the instantaneous mixing length and U 1is the mean velocity. A skewed dis-
tribution can result from either a skewed distribution of the mixing length, that is the
distance in the y direction which the fluid is assumed to have travelled before passing
through the measurement point, or from curvature of the mean velocity profile. The present
data support the hypothesis that in plane turbulent flow the effects of the curvature of
the mean velocity profile are the more important and that consequently the mixing length
is assumed to have an effectively symmetric probability distribution. It is reasoned in
the Appendix that if the diffusion process is dominated by some directional external
influence then the alternative form of diffusion will occur. Smits et al?1* have obtained
data in a highly curved flow which do not support the gradient diffusion concept and
Ramaprian and Shivaprasadl® have demonstrated that turbulent diffusion is strongly
affected by flow curvature. It is possible that centrifugal body forces effectively skew
the probability distribution of the mixing length and give rise to turbulence diffusion
closer to the general form

3

— i ——
Q%v « <§7) and W o« (- )

[SY™

(22)

5.6 Turbulence structure in the wall region

Reference has previously been made in section 5.2 to the fact that the 'law of the
wall' is not compatible with a constant value of von Karman's 'constant', k , in the mix-
ing length formulation of shear stress in flows with shear stress gradients near the wall.
It is shown in this section that these two observations can be reconciled to the extent
that 1f the effects of diffusion are included then a constant value of k in Bradshaw's
dissipation length scale is compatible with a law of the wall velocity profile.

As an example of the role of the diffusion term consider flow 7 which exhibits a
high shear stress gradient near the wall but a low shear stress at the wall. Fig 12
shows that the direct production of shear stress in the wall region (y/¢8 < 0.1) is small
but Fig 13 shows that there is a large diffusion of shear stress towards the wall from
further out in the flow. It is proposed that the shear stress gradient in the wall region
of flow 7 results from a balance of dissipation and diffusion, and not from a balance of
production and dissipation as has been widely assumed in the past. In this section we seek
to provide quantified evidence to support this suggestion and we start from the form of the
rate equation for shear stress deduced by Bradshaw and given in equation (16) as,

3

— —_ 2 2
D [~ uv — . dU (- uv) 3 uv
B - e B () =

In the wall region we assume that the convection term is negligible and the diffusion can
be represented by equation (17). then

=, dU _ (- §¥) d/s d , =2\ .
(- av) &I + a§<§I E§< uv)’) = 0 . (24)

It is also stipulated that the velocity profile must follow the law of the wall and so
outside the sub-layer and blending regions,

2
_2fau
Tw/p = 2 <a§)

and the velocity gradient can be expressed as,

. /p
o (25)

We are seeking to show that a constant value of k can be used and so the mixing length,
2 , and Bradshaw's dissipation length scale, L , are expressed in the wall region as,

. = I = ky . (26)

With these substitutions equation (24) can be written
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ba -0 et -

which is an ordinary differential equation for t/p as a function of y

3
2

Equation (27) requires boundary values of (t/p) and g%(r/p) at a chosen point in

the flow. As the convection term has been neglected and the law of the wall has been
used to determine the velocity gradient the point must be chosen within the wall region
and, in general, should be outside the laminar and blending regions where the equation is
not expected to apply. There are two simple analytic solutions which correspond to
special flows

(1) T = 7 . (28)

This is the solution appropriate to flat-plate boundary layers.

e
T %y k for T = 0 . (29)

This is the solution corresponding to incipient separation and will later be shown to be
in close agreement with the measured data of flow 7.

A genergl numerical solution in a closed form can also be obtained as follows:
Make the substitutions

&)
2

2
n o= (T/Tw) , 8 = 1ny and A = aj/k

then equation (27) becomes

d2 2
=3 = A -n*) (30)
ds
Make the further substitution
d
p o= I (31)
and equation (30) can then be written
d d 3
& = pg = A -, (32)
which can be solved for p as a function of n with the boundary conditions that at
S =8, n=mng and p = p; . The following explicit equation for p 1s then obtained

1

s 5 2

- 2 1 2 _3 3\ _(1 2 _3 3

p = [pl + 2A{(§ n % n) (2 ny 5 ny

Using the definition of p as given in equation (31) the above equation is written as

1
an _ [ 2, 4(2_.63)_(,2_.63 ;
as b1 n ;n nq ‘-5"(\1

This equation can be integrated to give

n
at o
3 5 3
i [p§ e nal)ﬂ .

which is written in terms of the coordinate y as

1

(33)
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Equation (33) has keen evaluated numerically using appropriate values of pq and
nq at a starting value of yq = 0.028 . The values of pq and n, were selected so that

the predicted variation of shear stress with y matched the measurements over the inner
portion of the logarithmic region, using measured values of Ty and a; = 0.15, k = 0.4 .

The results are shown in Flg 15 as solid lines in the region of the law of the wall and
dotted elsewhere, where equation (27) should not be expected to apply.

Flow 4 is a little different from the remainder in that 1ty occurs only just
outside the wall region, as shown in Fig 15,and this probably accounts for the tendency
to overestimate the shear stress in this case. For flow 7 the analytic solution (equation
(29)) is indistinguishable on Fig 15 from the numerical solution within the wall region,
which indicates that the production is indeed negligible and the shear stress results
from a simple balance of dissipation and diffusion.

The level of agreement shown in Fig 15 provides strong support for the basic premise
of this section that the shear stress gradlent results from the strong diffusion of tur-
bulence towards the wall and not from variations in the dissipation term.

6 CONCLUSIONS

The seven turbulent boundary layers studied are shown to be good approximations to
two-dimensional equilibrium flows. The mean flow parameters are consistent with existing
published data and suggest the use of a particular analytic form of the equilibrium locus,
which is typical of several that have been proposed in the literature. There is strong
evidence that the law of the wall holds for all the flows and that, in consequence,
von Karmdn's 'constant' in the mixing length model of shear stress must vary appreciably.
The evidence supporting the general validity of the law of the wall is that all the flows
exhibit an apparent log-linear region of the correct slope and the values of the skin
friction at the wall deduced from these curves are consistent with the values of shear
stress measured in the flow with hot-wire equipment. In the flow closest to separation
the law of the wall appears to hold up to y/8 =~ 0.1 although by then the shear stress
is over ten times its value at the wall.

Consideration of the second and third order correlations of the fluctuating velocity
has produced the following relatively simple account of the characteristic behaviour of
the turbulence.

The production of shear stress is centred about two distinet regions in the layer.
These regions are immediately adjacent to the wall and at approximately the mid polnt of
the layer. Under conditions of favourable or negligible pressure gradient, with corres-
ponding low values of shape parameter, very high levels of production occur near the wall
but these levels fall rapidly and the production over the outer part of the layer is very
small. Under incipient separation conditions, with high values of shape parameter, the
production reaches a maximum in the centre of the layer and falls to a low level near the
wall. For intermediate values of shape parameter the above characteristic distributions
of production are combined in varying amounts and can lead to double humped distribu-
tions across the layer. The corresponding distributions of shear stress and turbulent
kinetic energy are similar to the distributions of production except that the double-
humped distribution does not occur. Instead, as the shape parameter increases, the posi-
tion of the maximum stress moves steadily away from the wall region towards the mid point
which it reaches under incipient separation conditions.

The diffusion of shear stress and turbulent kinetic energy by the turbulence 1is
shown to relate to the gradient of the shear stress and kinetic energy rather than their
magnitudes. Consequently at the higher shape parameters, when the position of the maxi-
mum shear stress has moved away from the wall region, shear stress is diffused towards the
wall in the inner region and towards the external flow in the outer region of the boundary
layer. PFinally it is shown that if the diffusion of shear stress towards the wall in the
wall region is taken into account, then the dissipation length scale used by Bradshaw in
his form of the shear stress rate equation becomes independent of the pressure gradient and
compatible with the law of the wall velocity profile., This result is to be contrasted
with the mixing length representation in which the length scale must be dependent upon
the pressure gradient if the observed law of the wall velocity proflle is to be recovered.



Appendix
MIXING LENGTH MODEL FOR TURBULENCE DIFFUSION

In this Appendix the mixing length formulation of shear stress is extended to obtain
expressions for the turbulence diffusion terms. The derived equations relate the turbu-
lence diffusion to other turbulence quantities and not to the mean velocity field and are
not expected therefore to be significantly affected by the absence of any allowance for
lag in the simple formulation used.

In the mixing length model of turbulent shear flow the fluid passing through a par-
ticular point in the flow at time t with veloeity U(y,t) 1is modelled as though it had
come from another region of the flow at y + h with a velocity equal to the time-arranged
velocity in that region, U(y + h). Thus for all time the identity

U(y,t) = U(y + h(t)) (A-1)

defines the time history of the length scale h , which is measured in the y direction.
The turbulence veloecity can therefore be expressed as a Taylor series in ascending power
of h as

2 2
U(y,t) = U(y) + h(t)(ﬂ) 4 B(E) 9-“) v (A-2)
dy ¥ 2 (dy2 .

and the time averaged form of this equation requires that the statistical properties of
the length scale h satisfy the following equation,

- 2742
o - H(F), 25 -
y dy y

The fluctuating component of veloecity in the x direction can be deduced from
equation (A-2) as

2 2
s U - Uy - n(gY) %—(%—%) . (A-3)
ay

where the time-dependence of u and h 1is now understood.

It is usual in the derivation of the mixing length model of shear stress to assume
that the v component of turbulence is proportional in magnitude to u and negatively
correlated with it. The assumption of negative correlation is valid only if the shear
stress (- puv) is positive and furthermore is not invariant with inversion of the coordi-
nate system. In this analysis it is argued that to be compatible with the physical model
used to derive equation (A-1), v should have the same sign as (- h). This is because
if the flow at y 1is modelled as having come from y + h with h > 0 then it follows
that v may be expected to be negative. It is therefore assumed that v can be expressed
as

v & -nlg| . (A-4)

It follows directly from equation (A—U)athat the second and third order correlation
terms can be written

uv < - hu|g| , v o« (A-5)
and

u2v « oy o« - h3 , uv2 « u3 : (A-6)

(3

Substituting equation (A-3) for u in equation (A-5) yield the following forms for
the second order correlation terms to order h2 ,

2
2,4dU, (dU 2 2 2{4U
uv « - h |a§|(dy) and ve ® u® « h (33) . (A-T7)
Taking the time average and introducing the mixing length ¢ ,

where 22 « h2 , yields
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—— —_— 2
_ — .24y, {ayu 3 Z 2(au
uv = 2 I —dy | <_dy) and u « v o« & (E) . (A—8 )

The third order correlation terms are all functions of (u/h)3 which to order h is
given by equation (A-3) as

3 272
3 « au 3h{du a~u -
(u/h) <_dy) n <_dy> <__dy2> . (8-9)

An approximate form of equation (A-9) expressing (u/h)3 in terms of second order correla-
tion terms in place of functions of the mean velocity profile can be obtained as follows.
The mean velocity profile can be expressed in terms of stresses by taking the square root

of equation (A-8) to yield
av _ o/ o/ v? . o P
% %

— (=4
dy 9

(A-10)

where C = 1 for uv g O and ¢ = -1 for uv > O .

C has been introduced to remove the ambiguity of sign introduced by taking the square

root. The term d2U/dy2 in equation (A-9) is then given by differentiating equation
(A-10) with respect to y . For simplicity the mixing length & 1is assumed to be inde-
pendent of y , which is a valid assumption in a boundary layer for y/6 > 0.2

Then .

’v _ 1 ac/|w 1ac/ v . 1ac/ v® . (A1)
dyz 2 v L T dy % dy

Substituting equations (A-10) and (A-11) into equation (A-9) gives the following expres-

sion for (u/h)3
3

=2 — ¢
(w/h)? « QlEXl, ;b 4 (cluv]?) C(A-12)
3 PR

W

where the shear stress can be replaced by either of the normal stresses.
General expressions for the diffusion of shear stress and turbulent kinetic energy

can be written by substituting equation (A-12) into the exXpressions given in equation
(A-6). The diffusion of shear stress is given by

) (A-13)

W7
<

a _—
i Iy (cluv|

3

_ = -
(zﬂ « el B (P (A-18)
23 23

Fquations (#-13) and (A-14) demonstrate a dependence of the turbulence diffusion
both on the magnitude of the turbulence and on its gradient. The significance of the first

term depends on the magnitude of h3/£3 which will be zero if h(t) has a symmetrical
probability distribution. The present data demonstrate that in plane turbulent flow the
first term is insignificant and that the second gradient term dominates. Smits et ar 14
have obtained data in a highly curved flow in which the diffusion is a function of the
turbulence level and so in that case the first term in the above equations dominates.

With the assumption that hLl & zu it is concluded that in plane turbulent flow

Jw

d . 2 3
w’ o« a§(c|ﬁv|2) and q°v « -h

~

a
S £L<9q22) (A-15)

nh a/.z2
B ﬁ(cq )

which for uv ¢ O reduce to
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3

e 3 —_—

2 d, =13 2 a,. 2,2
uve o« g H§(— uv)? and Qv o« g H§(q ) . (A-16)

If some mechanism, such as perhaps centrifugal body forces, is present which leads
to a strongly asymmetric probability distribution of the mixing length then
3

e 3 Ly

—]z —-52
w? o« C,uvl2 and q2v « Cq2 (A-17)
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SUMMARY

Commonly-used wall shear stress correlations appropriate for rough walls imply a
degree of equilibrium between the boundary layer and the wall. For two roughness geometries
examined experimentally in zero pressure gradient, equilibrium in the mean velocity appears
to exist beyond 350 times the roughness height from the origin of roughness. For moder-
ately close spacing of simple three-dimensional roughness elements, a correlation due to
Dvorak appears accurate; for less dense spacing (but still "fully rough" conditions) the
correlation underestimates the wall stress significantly. The equilibrium boundary layer
studied experimentally showed unexpectedly large turbulent intensities, constant integral
length scales, no region of constant stress and a semi-logarithmic region best described
with a von Karman constant of 0.36 * ,02.

COMMONLY USED SYMBOLS

da zero plane displacement height.

k geometrical roughness height.

n boundary layer shape factor (equation 17).

v longitidinal mean velocity.

21 free stream velocity. 1/2

Ve shear velocity £ (To/p)

X, Z longitudinal and cross-stream co-ordinates.

8 nominal boundary layer thickness (see equation 18).

§* displacement thickness.

A roughness density; longitudinal spacing of square bars in the two-dimensional case.
Xe density of roughness equivalent to A.

K von Karman's constant (equation 4 and following equations).
8 momentum thickness.

o fluid density.

To total wall shear stress.

v kinematic viscosity.

1. INTRODUCTION

When estimating wall shear stress created by a fluid flowing over a rough wall, it
is neither practical nor desirable to calculate the details of the flow around individual
roughness elements by finite difference solutions of the full fluid equations. Semi-
empirical relationships are usually constructed which link roughness geometry to some bulk
description of the boundary layer which forms on the surface, an integral property of the
boundary layer often being used. This practice lends itself to the use of well known in-
tegral techniques for the prediction of the boundary layer growth.

Wall stress relationships so formulated imply, for their existence, a degree of dynamic
equilibrium between the boundary layer and the surface beneath it. This equilibrium is
usually assumed but its limits are seldom identified. Strictly self preserving boundary
layers can exist in zero pressure gradient only when wall shear stress co-efficients are
exactly constant, the roughness height and spacing growing linearly in the streamwise
direction to remain constant fractions of the boundary layer thickness. In the more common
case of constant roughness height and spacing, it appears likely that equilibrium would
be approached some distance downstream of the origin of roughness. It is the purpose of
this work to investigate when this equilibrium is attained in one or two cases, and to
measure some of the characteristics of the approximately self-preserving boundary layer
so created. A second goal is to check the accuracy of one wall stress relationship, that
proposed by Dvorak (ref. 1), when used for three dimensional roughness elements of simple
geometry.

The semi-empirical basis for the wall stress relationship is first reviewed, in an
attempt to clarify the limitations of the correlation. Experiments are then described
which test the correlation and the approach to equilibrium. The results are then dis-
cussed, with reference to the original objectives of the work. A well known integral
calculation procedure due to Head (ref. 2) is used where necessary to provide quantitative
results.

2. FORMULATION OF THEORY

In developing an equation for the mean velocity close to a wall, a first step is to
form a "law of the wall"™ by dimensional analysis (Millikan, ref. 3). For smooth walls
this takes the form:

vV = fn[VTI v, 2l (1)
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so that %— =fn [Z/(%—)]

and the ldcal length®scale for the flow is (v/VT).

For very rough walls, it is usually assumed that viscosity is not important, tacitly
implying that the roughness has sharp edges and a sufficiently large height. A common

rule is that the viscosity is no longer important when (g%l) 3 70 but this must depend on

the form of the roughness and the flow characteristics as well.

If viscosity is not important, a length scale for the roughness must be identified to
construct an equation similar to (1). Even when roughness elements project from an other-
wise smooth wall, the case considered in this report, the effective height of the roughness
may be different from its geometric height so that the origin of % and of the roughness
height depend on the roughness density.

One formulation consistent with these ideas is described by figure 1, where symbols
are defined, and by the equations:

V = £fn [VT' z-d, k-4, Al

or Voo 24 A (2
V. k-d’ k~-d
The effective length scale is now (k-d) and a density parameter ), expressing the effect-
ive lateral and longitudinal proximity of adjacent roughness elements, is also introduced.
Note that expression (2) is not general in the sense that the surface is still assumed to
be fully rough; viscous effects are therefore absent.

As roughness elements become more closely spaced, sheltering of neighbouring elements
takes place and the effective height of the roughness elements decreases. The magnitude
of d, often called the zero plane displacement, then increases so that d is dependent on
A, and of course on the roughness geometry. For large enough spacing between discrete
elements, A/(k-d) is large and the effective height of the roughness is then the actual
height k, the displacement parameter d being zero. It is important to identify cases in
which this simplification is permissable, and it is consistent with the foregoing argu-
ments that d will be zero when the flow separating from any individual roughness element
becomes effectively reattached before separating again due to the upstream effect of the
next roughness element. The full height of an element (k) is then the appropriate physical
length on which to base the dimensional analysis of equation (2), not the reduced height
(k=d).

It appears from studies of flow about individual roughness elements that reattachment
distances vary from about 15 times the roughness height, (see ref. 4), for an isolated
two-dimensional roughness element such as a fence, to as little as 2.5 times the roughness
height for an isolated cube (ref. 5). (In both cases reattachment distances are indicated
as measured from the front face of the element).

These reattachment distances and the details of the flow behind the element must
depend not only on the geometry of the element but also on the mean velocity and turbulence
characteristics of the approaching flow, so that considerable variation can be expected.
Indications from other studies by Lee and Soleman (ref. 6) are that a "change of regime,
from isolated flow to wake interference flow," occurs at cube spacings (laterally and
longitudinally) of about 3.4 k; the roughness correlation of Dvorak shows a marked change
for a spacing of about 5 k for two-dimensional bars; Counihan's studies (ref. 7) show a
change in the functional form of his "roughness length" at a spacing which would be
equivalent to 6.7 k for two-dimensional elements of height k. These and other studies
confirm that sheltering effects rise rapidly for spacings less than about 3 k between
three dimensional elements and for spacings lesgg than 5 to 15 k for two-dimensiocnal
elements. TFor greater spacings (lower roughness densities) it appears plausible to assume
that 4 = 0.

It is worth remarking, in connection with equation (2), that regular and close spacing
of uniformly shaped roughness elements can lead to the "D-type" of roughness described by
Perry, Schofield and Joubert (ref. 8). For this case d becomes dependent on parameters
describing the flow, such as pipe diameter, for roughened pipes, or boundary layer thick-
ness, for roughened walls. This occurs apparently only for regular and close spacing of
two-dimensional elements and is not of concern in this report.

Once a law of the wall has been formulated, the usual assumption for flow farther
away from the wall,

= v, (2-9)] (3)

leads to the semi-logarithmic law in the form:

v 1 Z-d !
= n (= + B (4)
T
where B' is now a function of A/(k-d) and x is either a universal constant, as is usually
assumed, or may be a function also of A/(k-d) for rough walls. (z-d)
Equation (4) applies away from the immediate vicinity of individual elements ( /
(k-d) $ 2) but in the "near wall" region (%2/8 ¥ 0.3 for zero pressure gradient). Compar-
able limits exist in the smooth wall case in which the viscous sublayer is excluded. This
form of equation has variables more readily identified with the actual flow field than
those used in the comparable and fairly common equation:

\'4 1 Z .
2. == 1n (——) (5)
V‘I.' K Zo



in which Z5 a "roughness length" has no obvious physical relationship to the actual
roughness height.
Another common expression is:

v _ 1 ZVI I AV
v P v T B V;

where %!-is the shift in the velocity profile due to the roughness and is therefore a
T .
function of roughness density and geometry. The form of %Z is always chosen to be:
T
&-Llanddn 4 cm
. K v

and %! is plotted against (E%L) for any one roughness geometry and density as in Dvorak's

T
paper (ref. 1). Although plausible in principle, this formulation is misleading for fully
rough surfaces in that it implies that the roughness function %Y depends on viscosity where-
as this is not the case for sufficiently rough surfaces. T

Provided the roughness density is not sufficiently great to create sheltering effects,
d can be assumed to be zero. This report considers only such cases (equivalent two-

dimensional spacing of A/(k 5 32) and is further concerned only with roughness consisting
of identically shaped elements spaced uniformly and projecting from an otherwise smooth
surface. No confusion arises about the origin for Z or the definition of k for this
simple geometry. Thus we assume a semi-logarithmic velocity distribution of the form:

=Llin2, g
= ZnZ 4 B (6)

v,
v
T
where B' is a function of the roughness geometry and spacing.
Following Millikan (ref. 3) and others, the complete velocity distribution can be
described, for zero pressure gradient, by:

v _1 Z | p4
V; =z In (@) +B + h(3) (7}

where h(%) is a universal function describing that part of the velocity profile which

deviates from the logarithmic distribution in the centre of the boundary layer. This
assumes some kind of equilibrium of the entire flow, a point discussed later. For 2=§,
V=Vl (the free stream velocity), and equation (7) becomes:

vi _ 1 8 i
vi =< 1ln () +B + h(1) (8)

or, absorbing the constant h(l) into the function Bl,

Violon & 4
v, == 1n (k) + B (9)

Equation (7) subtracted from equation (8) gives the defect law in the form:

Y%:X = fn (%) + constant (10)
T .
where the function of (%) is independent of roughness density or spacing, a conclusion

confirmed experimentally by Hama (9) and others.
Equation {9) involves the boundary layer thickness 6 and it is sometimes more conven-
ient to replace § by 8* the "displacement thickness" defined by:

[>:]
* (Yl:y) asz
V1

[=c]
{113

V-V v
( v ) . (vi) d(Z/s)
0

Using equation (10) in the above, it can be seen that

*
%— %L = universal constant (11)
L
provided equation (10) holds for a sufficiently wide range of %/68. Using (11), equation
'S N 8 %
(9) becomes: v, ” n (er) + B (12)

Dvorak (1) correlated experimental results from various sources to suggest a form for
the function B of equation (12), valid for square two-dimensional bars of height k and

spacing A and for A/k 3 5:

B =A+ 5.95 (0.48 %n % - 1) (13)



7-4

where A is a constant with value about 4.8.
Equations (12) and (13) are restricted to cases in which viscosity effects are absent.

They allow the shear stress co-efficient Cf, defined as 2 (%1)2, to be found for any height
1

ratio §*/k and spacing A/k.

Equation (7) and those that follow from it, imply an equilibrium in the entire flow,
so that properties such as turbulent length scales, spectra and so on when non-dimension-
alized by a single length scale and a single velocity scale do not change rapidly enough
in the streamwise direction to have their gradients affect the flow in any way. Strictly
this is a "self-preservation" of the flow and is possible in zero pressure gradient only
when Cg = constant, the boundary layer grows linearly and 8*/k, A/k are constants. If &%
grows linearly in the streamwise direction k and ) should also increase linearly. However,
over limited streamwise distances far from the origin, it appears that boundary layers
growing over roughness with k, A constant can be considered to be in equilibrium, as will
be demonstrated later.

The correlation of equation (13) is valid only for square two-dimensional bars normal
to the flow, and it is necessary to generalize these results to other roughness element
geometries of various.shapes. As described in ref. 10, this simply results in the use of
the ratio le/k in place of A/k, defining the former as:

re. (Cplp 2p
(CD)E Ap
is the drag co-efficient of a two-dimensional bar of height k measured with a

(14)

where (CD)B

particular upstream boundary layer; (C is the drag co-efficient of a typical roughness

)
D'E
element of height k measured with the same upstream boundary layer and AP/AF is the ratio
of plan area to frontal area for the new roughness element. Since cubes or rectangular
plates with a face normal to the flow both have drag coecefficients of about 1.2, as do
square bars normal to the flow, equation (14) reduces for these roughness element geometries
to:

Ae
k__u

The correlation of equations (12) and (13) is plotted as the solid curves of figure
2 for various Ae/k of 10 and above, an approximate limit for the assumption that d of
equations (2) (3) (4) is zero.

These correlations for wall shear stress can be linked with a boundary layer shape
if a suitable calculation procedure is adopted. For present purposes, we have adopted
Head's integral method (2), used by Dvorak (1) and shown to be fairly accurate for zero
pressure gradient cases at least. The method, used with the usual momentum integral
equation and the assumption that the non-dimensional shape of the boundary layer does not
change in the streamwise direction, result in the following conclusions (see ref. 10 for
details):

é?k?

(15)

(%l) = known arithmetic function of n (16)
1
where n is a suitable shape factor describing the boundary layer shape, defined here by:

n = (gi - 1) (17)

N

with 8 as the usual momentum thickness.

This quantity n is the exponent of a power law if a power law adequately describes
the mean velocity profile. If a power law is not an adequate description of the profile,
n can be regarded as a simple shape factor, closely related to the more common shape

§*
factor (5—).

Using equation (16) with equations (12) and (13) allows the shape factor n to be
*

expressed in terms of %— and %9 or, with the use of (11) in terms of % and %9 . The
latter form is shown by solid curves in figure 3, and is of course valid only if the
assumption of equilibrium is wvalid.

Head's method, used with the correlation of Dvorak and the assumption of exact

*

equilibrium (dn/dx = d(8*/6)/dx = 0) also gives values for the ratio (%— %l) of equation
(11) in the range 3.80 to 4.00, for reasonable values of A/k. T

Experiments are compared to these predictions in the next section. In every case ¢§*
and 0 were found directly from the measured velocity profiles and n found from them using

equation (17). The nominal boundary layer thickness § was then deduced from the relation-
ship:
%?_z n;l (18)

an equation strictly valid for a power law profile but useful in defining an equivalent
or consistent § in any case.

3. EXPERIMENTAL ARRANGEMENTS

Three boundary layers have been studied experimentally in the large U.B.C. open-
circuit wind tunnel. The tunnel has a test section 24.4 m long, 2.44 m wide and initially
1.5 m in height. The test section roof is adjusted to maintain zero pressure gradient in
the entire test section length. Since the tunnel is the blower type, exhausting directly
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into the room, the pressure in the entire test section is then zero gauge, a great advan-’
tage in some measurements.

Floor roughness was created by fastening thin vertical strips of aluminum to the wall
at regular intervals. The ratio of height to width of each strip was always 2:1 and
values of Ale/k from equation (15) were 32 for tests I and II and 128 for test III. Rough-
ness heights k were 38.1 mm in test I and 25.4 mm for tests II and III. The roughness
strips were placed in lines across the tunnel, adjacent lines being displaced so that the
pattern was staggered.

Wall shear stress was measured directly from a drag plate, a large isolated section
of roughened floor fastened to a balance. Velocities were measured with a linearized hot
wire anemometer. Details of the measurement techniques and arrangements can be found in
ref. 10 or ref. 11.

Experimental set II was conducted as a check on set I; both had the same geometrical
arrangements but set II had a roughness size 2/3 that of set I. Set III was a study of
relatively sparse roughness undertaken to explore the limits to the roughness correlations
described in section 2.

4. RESULTS

The measured values of §*/k and 6/k are listed in appendix I together with values of
n and 6/k deduced from them, at each streamwise position x/k. Measured wall shear stress

Ve , S . . : * ]
V% is also listed, both as a distinct quantity and also in the ratio (%% %— . No evidence
of Reynolds number (viscous) effects was found in these tests.

*

Measured results for %i , n, %— and the deduced values of % were plotted in figures

2 and 3. The measured values for sets I and II approach the predicted equilibrium con-
ditions for their roughness density (%E = 32) at distances downstream of the roughness

origin greater than about 350 times the roughness height. This appears to be the develop-
ment length required with this roughness density at least, for the mean velocity to reach
a modest degree of equilibrium. It is reassuring that the values from both sets I and II
approach equilibrium at about the same x/k, as they should, and that the results from set
I and set II remain on the appropriate equilibrium line for all values of x/k greater

than 350.

The plotted values from set III appear to approach an equilibrium condition with
%g between 60 and 80, as indicated by the plots of figures 2 and 3. This is distinctly
different from the value of 128 predicted from the roughness geometry and density; the
wall shear stress is clearly higher in the measurements than had been predicted from the
correlation of measurements on two-dimensional bars.

For the set III data, it is likely that the shear stress associated with the smooth
wall between roughness elements is a significant part of the total stress. Roberson and
Chen (ref. 12) estimate for a roughness consisting of cubes with a density given by
A=128, that about 40% of the wall stress arises from the smooth wall. 1In the present
model used to generalize Dvorak's collection of square bar measurements to other roughness
geometries, it was implicitly assumed that the flow between roughness elements is the same
for two and three-dimensional elements, hence giving rise to equal shear stress contrib-
utions from the smooth wall sections in equivalent roughness cases. This is not accurate
for two reasons: flow separation is greater for two-dimensional bars than for three
dimensional strips, as noted in section 2; the reattaching and developing boundary layer
behind two-dimensional bars will be very different from that behind three dimensional
strips and will probably have greater three dimensionality and larger wall shear stress.
For both of these reasons, the smooth wall stress in the three dimensional case will be
greater than that for the two-dimensional bars and the total stress will therefore be
higher. This effect will be small for concentrated roughness but will become increasing-
ly significant for widely spread elements. Apparently, at A/k = 128, it leads to differ-
ences in total stress of the order of 20%, as shown in figure 2. Until the flow is
analyzed in greater detail between two and three-dimensional roughness elements, perhaps
along the lines suggested by Roberson and Chen, no qguantitative corrections to Dvorak's
correlation can be made. We conclude that Dvorak's correlation is useful for a variety
of roughness geometries only for Ae/k less than about 50 and that it will underestimate
the values of VE and n for surfaces of lower roughness density, for three-dimensional
roughness elements.

The equation (6) developed in section (2) from dimensional arguments, is often de-
duced from the assumptions of a constant stress region and of a Prandtl mixing length pro-
portional to Z. Neither of these assumptions appears valid from measurements made in the
set I series at the farthest downstream location, x/k = 493,

The measured shear stress above the wall is shown in figure 4, together with average
value of wall shear stress deduced using the drag plate. No measurements were made above
the wall for Z/k < 2 since individual roughness elements create strong spatial non-
uniformities in this region. Although the values of shear stress extrapolate smoothly to
the measured wall stress, there is no evidence of a constant stress region. In this case
the inner tenth of the layer, that usually associated with a constant stress region, is
occupied by the inner sublayer (Z2/k % 2} so that it is not surprising that a constant
stress region is not evident.

Measurements of auto correlation of longitudinal turbulence velocity were made at

various (%), and these were converted to integral length scales xLu using the local mean

velocity at the same %. There is no consistent trend in these scales with Z over the
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range investigated, as shown in figure 5. This is in agreement with the common observa-
tion that length scales for boundary layers increase with Z only for the region z/8 % 0.2,
and are constant thereafter. Apparently in this data for set I, the region in which
b4 . . .
L, scales with Z is not evident and only the region in which XLu scales with a con-
stant outer length typified by §, is encountered.

It is interesting to note that the ratio of (XLu/S) found here is about 0.3 which is

§imilar to that reported for the neutrally stable atmosphere for heights above 200 feet,
if § is interpreted for the atmosphere as the gradient height of about 1500 feet (see
ref. 13).

The longitudinal turbulence intensity for the data of set I is shown in figure 6, non-
dimensionalized by V;. It is easy to presume, from dimensional considegations like those
in section 2, that vuZ2 /VT will be a universal function of Z/§ just as —%:X is universal,

] h . T
but this turns out to be incorrect, a fact discussed by Bradshaw (ref. 14). The surpris-
ing degree of non-universality is shown in figure 6 where present measurements are com-
pared with those made by Corrsin and Kistler (ref. 15) above a rough wall. Despite the

fact that %i was about the same in both cases, the differences in the density and geometry

of roughness apparently make the turbulence distributions in these two cases very different.
The near universality of the velocity defect law, (Vl-V)/VT = f(y/s) can be examined

rather simply by noting the value of the constant of equation (11). Clauser (ref. 16)
found a value of 3.6 from his collection of data; calculated values using Head's method
for equilibrium layers of the sort studied here, range from 3.8 to 4.0; measured values of
this parameter for the set I, II and III boundary layers (in their apparent equilibrium
ranges) run from 4.05 to 3.92 aside from one isolated value at 4.10 in set III: (see
Appendix I). This comparison suggests that the expected equilibrium in the mean flow is
being approached quite closely.

The velocity measurements for set I have been used to deduce the value of k, often
called von Karman's constant, used in equation (6). These are listed in Appendix I to-
gether with the other data and show no trend with x/k. The average value, 0.36 is consid-
erably lower than the usual value of 0.40 or 0.41 usually assumed. Had the latter value
been used to deduce the shear stress from measured velocity profiles, errors of between
16 and 54 per cent would have been made. There is some evidence that k varies with Reynolds
number, being lower at very high Reynolds numbers and in fully rough situations such as
those encountered in the atmosphere. Wooding, Bradley and Marshall (ref. 17) report an
average value-of 0.35 for k from their own collection of data and Businger et. al. (ref.
18) reports the same value from other full-scale measurements. Thus, Kk may vary Slowly
with Reynolds number, becoming more nearly constant for very high Reynolds number or
fully rough wall cases. The present data add support to this argument, but does not rule
out the possibility already mentioned in section 2, that k depends upon the roughness
density A.

5. CONCLUSIONS

1. Equilibrium of the mean velocity, implied in simple correlations relating roughness
geometry to boundary layer characteristics, is reached about 350 times the roughness
height downstream of the origin of the roughness, for constant roughness density and
height.

2. For a range of moderate roughness densities, equivalent to square two-dimensional
bars placed across the flow with longititudinal spacings between 10 and 50 times their
height, the roughness correlation of Dvorak has been generalized to three-dimensional
roughness elements and has been found accurate.

3. For low roughness density (few roughness elements) the correlation of Dvorak, when
generalized to three-dimensional roughness elements, predicts shear stress and shape
factors which are lower than the observed values. This is probably related to the
importance of the wall stress associated with the smooth wall between roughness
elements in the case of sparse roughness.

4. No region of constant stress was evident in the stress measurements conducted in one
case; the height of the roughness elements was large enough in this case to create an
inner "sublayer" influenced by individual element geometry and location, which obscur-
red the region usually associated with constant stress.

5. Integral length scales measured in one case were essentially constant through the
boundary layer, being about one-third of the boundary layer thickness.

6. The longitudinal turbulence intensity measured in one case was considerably larger
than in comparable measurements made elsewhere. It appears that the "inactive"
motions generated by the large roughness elements in this case contribute consider-
able kinetic energy to the turbulence, while not significantly influencing mean
velocity or shear stress within the layer.

7. The von Karman's constant, used in the semi-logarithmic mean velocity correlation,
has an average value of 0.36 for one of the rough wall boundary layers studied here.
This is lower than the value of 0.41 often used and adds support to previous reports
listing low values of this "constant" for very rough wall boundary layers.
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APPENDIX I
he _ _
(a) Data of Set 1 = 32, k = 38.1 mm.
X
x 8% 0 8 Vy Vys* Ly
k k k n k Vl V_§ 8 K
T

140.8 2.17 1.28 0.35 8.38 0.0607 4,26 0.271 0.33
268.8 2.83 1.75 0.31 11.93 0. 0556 4,26 0.317 0.35
332.8 3.25 2.06 0.29 14.44 0.0543 4,14 0.290 0.38
396.8 3.51 2.27 0.27 16.49 0.0534 3.99 0.304 0.38
492.8 4,08 0.67 0.26 19.73 0.0527 3.92 0.289 0.34
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(b) Data of Set II %;g =32, k =25.4m
x Ll (i 8 Vo vy8*
k k k n k A7 v _$
1 T
145.5 1.93 1.10 0.380 7 0.0625 4.41
193.5 2.06 1.26 0.320 8.5 0.0600 4.04
253.5 2.54 1.59 0.300 11 0.0570 4.05
349.5 2.85 1.83 0.280 13 0.0560 4.04
445.5 3.61 2,34 0.270 17 0.0530 4.00
541.5 3.92 2.55 0.267 19 0.0525 3.93
637.5 4,54 2.98 0.261 22 0.0520 3.96
685.5 4,54 2.99 0.260 22 0.0520 3.96
e _ B
(c) Data of Set III =l 128, k = 25.4 mm
X 8* 5 g Vg Vis*
k k k n k 7 V.$§
1 T
145.5 1.36 0.856 0.294 5.99 0.055 4.12
193.5 1.55 0.993 0.284 7.00 0.0540 4.10
253.5 1.68 1.10 0.265 8.01 0.0530 3.96
349.5 2.06 1.35 0.260 9.97 0.0520 3.96
445.5 2.40 1.55 0.250 12.00 0.0505 3.96
541.5 2.92 1.97 0.242 15.00 0.0490 3.97
637.5 3.26 2.20 0.240 16,98 0.0475 4.04
733.5 3.86 2.61 0.240 19.99 0.0470 4.10
Figure |
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TURBULENCE BEHAVIOUR IN A SHOCK WAVE/BOUNDARY LAYER INTERACTION

by
P. Ardonceau, D.H. Lee, T. Alziary de Roquefort, R. Goethals

C.E.A.T. - E.N.S.M.A.
43 Rue de 1'Aerodrome, 86000 Poitiers (France)

SUMMARY

An experimental study of a two—dimensional shock wave boundary layer interaction is presented.
Experiments are carried out at a nominal Mach number of 2.25 for three compression corners of 8°, 13° and
18° corresponding respectively to attached flow, incipient separation and well separated flow. The Rey-
nolds number based on overall thickness of the undisturbed boundary layer is Ry 85 = 1.0 10 . The measu-
rements involve wall static pressure, static and total pressure profiles, determination of the mean and
RMS fluctuations of the u and v velocity components with a laser doppler anemometer, hot wire measurements
of the mass flow fluctuations and spectrum analysis of the hot wire signal.

NOMENCLATURE

C correlation coefficient of ( u)' and T{

E(f) spectral density

M Mach number

Ry hot wire imposed resistance

Ry hot wire resistance at total temperature

Spu = 3 Log E/% Log pulRw, T hot wire sensitivity
STy = -3 Log E/d Log Tt|Rw, pu coefficients

Te total temperature

a& = (Rw'RTt)/RTt overheat ratio

f frequency

P static pressure

r = Spu/STt ratio of the sensitivity coefficients

u longitudinal velocity component
v vertical velocity component

w lateral velocity component

Re Reynolds number

o ramp angle

8 boundary layer thickness

p density

(pu) mass flux
) instantaneous value
<( )'> RMS value

&) mean value

1. INTRODUCTION

One of the main difficulties in the numerical prevision of shock wave turbulent boundary layer
interaction is the modeling of turbulence in a compressible flow subjected to a very fast evolution. With
a suitable turbulence model, the mean flow field may be calculated either by using an interacting boundary
layer approach (complete solution {1}, boundary layer only {2, 3} or, more directly, by solving the full
compressible Navier Stokes equations {3, 4, 5, 6, 7}. However in each case the agreement with the experi-
mental data is not quite satisfactory for the wall pressure or skin friction coefficient and really poor
when the mean velocity profiles or the turbulent quantities are considered. For some computations this
unsatisfactory result may be attributed to the use of rather rough turbulence models based on the eddy vis-
cosity concept. But even with more sophisticated models, using for instance several partial differential
equations for the transport of turbulent kinetic energy, Reynolds stresses... etc..., the prediction re-
mains unsatisfactory, especially when the boundary layer separates, although the computation becomes time-
consuming.

Clearly there is a need for experimental results on the behaviour of turbulence in such flows
at first in order to improve the modeling. Recently several experimental studies concerning turbulent
quantities have been published {7, 8, 9, 10, 11} and reviewed {3}. The aim of the present work is to fur-
nish reliable data on mean and turbulent RMS quantities and secondly to obtain additional informations on
the phenomenological mechanisms involved in the SW/TBL interaction with and without flow separationm.



Although many practical situations encountered in external aerodynamics or in turbomachinery
involve transonic or weakly supersonic flows, the present work is conducted at a Mach number of 2.25. This
value was preferred in order to avoid some experimental difficulties like chocking of the wind tunnel or
complicated calibration of the hot wire anemometer. It is assumed that the turbulence behaviour is not
drastically affected by the Mach number.in the transonic-supersonic range.

2. EXPERIMENTAL SETUP AND DATA REDUCTION

2.1. Wind tunnel and models

Experiments are conducted in a M = 2.25 wind tunnel (section 150x150 mm2?) driven by a M = 6
ejector. Stagnation pressure is 0.9 bars and the resulting Reynolds number is 1.1x107/m. The flow is
slightly heated in the plenum chamber (v 300°K) in order to obtain a recovery temperature at M = 2,25
equal to the ambiant temperature. The wall may be considered to satisfy the adiabatic condition, which
1s hoped to lead to a very low total temperature fluctuation level according to the strong Reynolds ana-
logy concept. The tunnel may be runned up to 2' without any noticeable change in flow conditions. The
wa%l boundary layer used to produce the shock wave/boundary layer interaction is fully turbulent (Re 8o =
10°).

Two types of SW/BL interactions have been considered namely the incident shock wave configu—
ration and the compression corner. The two-dimensionality of the flow has been tested with three models
for each configuration, by means of surface oil-flow patterns. The models are respectively a total span
type, finite span type and a third type fitted with fences (fig. 1). Very good results are obtained with
the "B2" or "B3" ramps, the "Bi" ramp or the three "A" shock generators lead to a rather three dimensio-
nal flow (fig. 2). The "B2" was finally chosen for its better compatibility with optical methods.

Three angles of the ramp are selected : 8°, 13° and 18° corresponding to three behaviours of
the boundary layer :

- attached
- incipient separation
- separated (fig. 2)

2.2, Instrumentation
Pressure measurements.

They include, surface, static and pitot pressure measurements. Static and Pitot probes as
well as hot wire probe, are mounted on a unique probe support situated downstream of the ramp and auto-
matically actuated along the y axis (fig. 3). A very weak probe interference has been observed on the
surface pressure measurements in the separation region (a = 18°).

Flow visualisation.

Shadowgraph and schlieren pilctures have been taken with various exposure times (down to 2yus)
(fig. 4). High speed movies have also been recorded at two speeds : 8000 and 35000 frames/s.

Laser Doppler Anemometry.

Mean flow velocity components and RMS velocities (along the x and y axis) are measured with
a laser anemometer. high power, Argon laser (Coherent Radiation CR6) is used in the dual forward scatter
mode {12} on the 5145 line (approximately 2W). The beam splitter is adjusted to obtain a 20 um fringe-
spacing with a £ = 600 mm focusing lens. A Bragg cell (TSI mod.980) is used when measuring the normal
velocity component or when the mean longitudinal component becomes too small (relative to the velocity
fluctuations). The laser and the other optical components are mounted on the same optical bench which is
moved by a computer program along a normal to the wall (flg. 5). The two beams are slightly directed
towards the wall and the y = O position is defined as the point where the beam crossing occurs on the
center of the tunnel wall.

Signal processing is achieved via digital counters (TSI mod.1990 and DELTALAB CEAT ANL 200).
The conventlional high pass - low pass filter bank is replaced by a special scanning filter which covers
the Doppler signal spectrum. The filter (bandwith Af = 5 MHz) is swept between two previously defined
frequency limits f,, f,. Several advantages may be found :
fo-fy

Af

1) Signal to noise ratio improvement = 10 log

2) The filtering may be completely automatized and is thus much faster and reliable than manual tuning

During this work, the frequency limits were defined before the flow probing thus allowing a
fy, fo bandwidth much larger than the signal bandwidth. A faster procedure would be to perform first a
fast sweep to define the signal spectrum location and the particules/sec ratio and then make a second
sweep with a better estimate of : fy, f, and of the sweep time to pick up a significant number of signals.

Hot wire anemometry.

A constant temperature hot wire anemometer (CTA DISA M 55) is used to measure the mass flux
density fluctuation <(pu)'> and the total temperature fluctuations <T{>. With the additional hypothesis
that the pressure fluctuations are small (ie <p'>/§ << 1) one may deduce the velocity fluctuation level
<u's>,



8-3

The probes (DISA 55P11) are modified in two ways

1) the gap between the two prongs is reduced to = | mm to increase spatial resolution and hot wire
strength

2) the wire (¢ = 5 um) is welded sufficiently '"slack" to eliminate some parasitic high frequency compo-
nents in the signal due to the strain gage effect {13}.

A symmetrical bridge (DISA 55M12) is preferred to the conventional 1/20 bridge for its better
stability at high overheat ratios when the frequency response of the anemometer is very large (= 300 kHz).

The frequency response has been evaluated at several overheat ratios in the flow conditions.
The hot wire probe is optically heated by a power modulated laser beam. (The TSI Bragg cell is fed with a
40 MHz sinusoidally modulated wave resulting in a quasi sinusoidal modulation of the first order diffrac-—
ted beam). The behaviour of the hot wire system is examinated at several overheat ratios (fig. 6).

A very good frequency response is obtained for an overheat a& = 0,75 with a gain = 10, fil-
ter = 4 setting. At the lowest overheat a; = .26 the 3dB frequency response does not exceed 100 kHz. The
data for the mass flux fluctuation level are obtained with high and medium overheat ratios (ay =~ 0.8 and
aw = 0,5) (cf. 3.3) resulting in an upper frequency limit greater than 150 kHz which is high emough to
take into account the whole spectrum of the fluctuations.

Spectrum analysis.

At high overheat ratios the hot wire is mainly sensitive to the mass flux fluctuations, pro-
vided that the total temperature fluctuations are small. The spectrum of the hot wire fluctuating signal
may be identified to the mass flux fluctuation spectrum. A spectral analysis of the whole flow field is
made with a SAICOR 51 A spectrum analyser, regardless to the Mach number influence on the hot wire signal
in the transonic and low supersonic range.

2.3, Hot wire data reduction

Following the Morkovin-Kovasznay analysis of the hot wire response in supersonic flow {14,
15} the fluctuations are splitted up in mass flux and total temperature fluctuations. The relationms
between the instantaneous hot wire voltage e'(t) and the aerodynamic fluctuations may be written provided
that the Mach number is high enough :

TL(6)

1 1]
e _(_t) =s (pu)_(t) - 2
E e pu Te
which leads to the mean square relation

T 2 15)2 v, <T1> 2
&2 =5 pu 2t _ csy, S putr Tt ST
= pu | — t Spu — = t
E pu pu Te

1
<Tt>]2
T¢

where C is the correlation coefficient between pu' and Tt and Spu , STt are the hot wire sensitivity
coefficients,

These coefficients are obtained from a direct calibration of the hot wire system (hot wire +
anemometer) in a special M = 3,5,20x20 mm? wind tunnel. The mass flux variation in the wind tunnel nozzle
is used to modify pu, the nozzle is designed to give a linear evolution of pu(x) with the distance to the
M = | section. Ty is varied via the generating temperature and the calibration is repeated for several
hot wire resistances Ry (fig. 7) {11}. Strictly _speaking Sou and Sty are dependent upon pu, T¢ and Ry .
However S,y may be considered as a function of pu alone (fig. 8). Results for several hot wire resistan-
ces and even different probes are grouped together between the dashed lines. Sr¢ is mainly a function of
the overheat ratio (fig. 8).

It is to be noted that even at aw = 0.8 the ratios between the two sensitivities Sy and St
is still small ~ 0.5 which proves that the hot wire remains sensitive to the total temperature fluctua-
tions.,

In order to measure <pu'>, <Té> and their correlation coefficient C at least three overheat
ratios must be used. In fact a higher number is necessary due to the data dispersion. This was done with
7 overheat ratios at several locations in the interacting boundary layer. A very low level of the total
temperature fluctuations was found everywhere (fig. 9) and a precise evaluation of T¢ was very difficult
to obtain, However the simplification :

<e'> _ ¢ <pu'>
E ATy

leads to underestimate the mass flux fluctuations (fig. 10). A precise and a fast method to measure
<(pu)'>/pu is to use two overheat ratios. It may be shown that when r = Spu /STt is not too small (high
overheat) and prov1ded that <Tt>/Tt is not large (v .0l in the present study), the relation between
<e'>, <pu'> and <Tt> may be written as

1_<e'> _r<pu'>  C<Ti>

Sy § u T
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Then only two relations are necessary to determine <(pu)'>. C and <Té> remain unknown but are
not neglected. A comparison between the three methods (one, two and seven overheats) is given in fig. 10.

Measurements of <(pu)'> shown in the paper are obtained with two overheat ratios.

3. RESULTS

3.1, Mean flow-field

The increase of the wall pressure measured at the wall is presented fig. 11 for the three
ramp angles. The typical "kink" on the distribution for the 18° angle is an indication of flow separation
confirmed by the surface oil flow pattern (fig. 11). A slight overshoot of the wall pressure is observed

at X/G° = 5 distance from the hinge line.

The longitudinal component of the mean velocity is presented fig. 12 as obtained with the
laser Doppler anemometer. Velocities are measured along the same axis upstream and downstream of the
hinge line regardless of the mean flow turning on the corner.

The slowing of the bottom of the boundary layer is clearly visible especially on the o = 18°
angle. The maximum gradient section of the BL lies farther from the wall as the angle increases. Data ob-
tained inside and near the separation bubble are of questionable quality due to a very pronounced biasing
effect of the signal sampling : a very low particles/s rate was found in the vicinity of the bubble where
the signals mainly correspond to high speed flow originating from the outer part of the BL. A typical be-
haviour of the BL velocity profiles is observed downstream of the separated region on the o = 18° ramp.
The flow is highly accelerated near the wall which results in a characteristic profile including two in-
flexion points {16}. This feature may be attributed to the mixing effect of the turbulence which is very
effective (see 3.2.).

The velocity profiles deduced from static and Pitot pressure measurements (the total tempera-
ture remains nearly constant) are in fairly good agreement with the LDA data. A 3 7 difference was found
in the undisturbed flow, probably due to an underestimate of the fringe spacing (fig. 13b). The effect of
the large turbulent fluctuations on the pressure measurements is not taken into account. This effect may
be very strong in regions where <u'>/u = 0(1).

3.2, Fluctuation measurements

Turbulent quantities measured are <(pu)'> (hot wire), <u'> and <v'> (LDA) in the whole flow
field. Total temperature fluctuations <Té> and the correlation coefficient between (pu)' and Ty were ob-
tained for some profiles to test the total temperatures fluctuation level, and then <u'> velocities were
deduced from hot wire data with the assumption p'/p << 1 and compared with LDA measurements.

The effect of the mean flow compression on the <(pu)'> fluctuation component is presented in
fig. 14. There is a continuous increase of the maximum fluctuation level with the ramp angle which is
respectively multiplied by 3, 4, and 5 relative to the initial level, The vertical extent of the turbu-
lent region also increases but more between the 13/18° angles than between the 8/13° angles. This results
from the large thickening of the BL in the separated region and also from the formation of large eddy
structures originating from the separation bubble.

Measurements have been performed even at locations where the mean Mach number is less than
1.5 and it has been demonstrated that the sensitivity coefficients exhibits large changes in transonic
flows with a pronounced non linear character. A M = 1.5 line has been reported and below this line re-
sults are certainly under-evaluated (Spu decreases with the Mach number below M = 1.4). Thus an assumed
constant value of Spu lecads to under estimate {(pu)'.

The laser anemometer is not semsitive to any Mach number influence and the <u'> measurements
reveal the existence of a very intense maximum of velocity fluctuations appearing near the wall at o = 13°
and rising up to more than §,/2 when o = 18° (fig. 15). This result conflicts with the observation made
by Mikulla & Horstman {17} that the separation of the BL leads to a lower level avay from the wall (§,/3).

The <v'> component exhibits an increase similar to that of the <u'> component when o = 8°
but the general level remains moderate on the ramp for o = 13 and 18° (fig. 16). It must be reminded
here that the fluctuations are measured along a normal to the wall before turning by the ramp.

The <v'> measured are a combination of <ui>, <vi> and u*v* where % denotes quantities measu-
red relative to the mean streamline direction. The rather small values of <v'> measured on the 13° and
18° ramps may be attributed to a strong and negative value of U'v'. A third measurement in a 45° direc-
tion is to be made which will give informations on the Reynolds stresses.

3.3, Flow visualisation - Spectral analysis

Strioscopic visualisations of the flow have been obtained with long (1/50s) and short expo-
sure times (2us) (fig. 4). Numerous large scale structures, inclined relative to the flow may be seen in
the incoming boundary layer. The visibility of these structures suggests a quite large lateral extension
and their longitudinal scale seems to be comparable to the BL thickness., On the back of the shock wave,
which penetrates very deeply into the BL, the appearance of the flow indicates a sudden increase of the
density fluctuations which is in good agreement with the velocity fluctuations measurements. Pressure
waves associated with the intermittent motion of the outer boundary layer in the reattachment region {18}
are clearly seen on the 18° ramp. Strong pressure fluctuation levels (10 or 100 times higher than in the
undisturbed BL) are currently observed in supersonic separated flows {19}.



8-5

Films were also recorded at a rate of 8000 frames/s. No instability of the flow was eviden-—
ced. The use of a higher speed camera (100000 frames/s) is hoped to reveal more detailed informations on
the behaviour of the incoming turbulent structures.

A complete set of spectra of the mass flux fluctuations recorded on the 18° ramp is presen-
ted fig., 17. The amplitude of the spectral denmsity E(f) has been multiplied by the frequency so that the
area of a part of the spectrum between two frequencies is equal to the energy contained between these
two frequencies.

The vertical scale is arbitrary for each spectrum, In the incoming BL,the energy is located
in a 5 to 50 kHz band,with a maximum at 30 kHz which corresponds in the Taylor's sense to a longitudinal
scale of about 2 6.

)

On the x = =12 mm a general increase of the spectral density is evidenced (the scale is di-
vided by 2 relative to the first profiles). A maximum still remains at the same frequency ~ 30 kHz but
in addition an increase of energy in a low frequency range ( 2 kHz) appears at the bottom of the BL.
This feature persists on the next profiles and disappears only at x = 60 mm.

This high level in the low frequency range evidenced near the outer edge of the BL at
x=-12, y=8and x = -4, y =14 may be attribued to a weak instability in the shock position.

The low frequency component of the spectra is not very well explained. It appears very lo-

cally on the 8° data and extents on a larger part of the flow for the 13° ramp angle and down to x = 36
on the 18° data,

4. DISCUSSION AND CONCLUSION

Detailed informations on the turbulent structures are uneasy to obtain due to the Mach num-
ber limitation of the hot wire anemometer and the sampled nature of the data obtained from LDA. However
flow visualisations and spectra of the mass flux fluctuations seem to confirm the existence in the main
part of the BL of large turbulent structures similar to those found in incompressible flows {20, 21, 22},

Downstream of the reattachment point some kind of longitudinal vortices with lateral orga-
nization could be expected from previous works. But transverse probing in the =z direction reveals no
variation of the V and <v'> components. Moreover the oil flow surface visualisations do not show any
evidence of cellular structure organization in the reattachment region.

One of the main features of the SW/TBL interaction is certainly its fast streamwise evolu~
tion which occurs within a few boundary layer thicknesses. This scale is of the same order of magnitude
as the incoming turbulent structures scale, This may cast some doubt about the suitability of the clas-
sical mean value approach and leads to take into account the large scale structures in a more explicit
way.

The interaction region is characterized by a large increase of the <u'> fluctuation espe-
cially in the shear layer above the separation bubble. This increase is expected on inspection of the
transport equation for u'Z and is very likely due to the high value of the production term -2p(3d/dy)u'v'.

The ratio <u'> / <v'> 1is plotted on figure 18. It appears that there is a very large in-
crease of anisotropy above the bubble. This situation may be explained by the fact that the turbulent
kinetic energy is produced on the u' component and redistributed on the v' and w' components mainly
through the pressure strain correlations. Due to the very short x extent of the phenomena the tendency
to isotropy cannot balance the large production and values of <u'> / <v'> larger than 4 are obtained in
some region. Clearly any modeling of the turbulence behaviour based on an equilibrium concept will fail
in this region.

Downstream, on the ramp, the ratio <u'> / <v'> decreases and the boundary layer recovers
a less anisotropic state. For a = 18° , x = 60 the profile has a rather similar shape to the one encoun-
tered in the undisturbed boundary layer (x = - 36)., The higher general level for x = 60 may be attri-
buted to the fact that the <u'> and <v'> values are relative to an axis system defined upstream of
the hinge line as noted in 3.2. One may conclude that a longitudinal extent of about 6 8, is typical
for a return to a more usual ratio of <u'> / <v'> , Therefore, any modeling based on a frozen distribu-
tion concept is questionable.

The phenomenon may be considered as a relaxation process for the distribution of energy bet-
ween the u'%,v'Z2,w'2 components. In fact many authors {3} solving the complete Navier Stokes equations
with some eddy viscosity model, tried to take into account this relaxation process by introducing some
empirical relaxation length. The preceding results suggest to use Reynolds stress transport equations
and show the dominant importance of the pressure strain terms which unfortunately are very difficult to
estimate in a compressible flow subjected to a high mean strain rate.

At last one must notice the appearance of low frequency fluctuations in the vicinity of the
bubble. No isolated frequency can be evidenced and the spectra seems to be fully continuous. So, on the
present results it is very hard to distinguish between these unidentified low frequency fluctuations and
the "proper" turbulence component. Transverse correlation measurements are planned in order to eludidate
this point, But even if the origin is an organized motion of the whole bubble one may suspect a strong
interaction with the turbulence near the wall where the frequencies are of the same order of magnitude.
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LONGITUDINAL VORTICES IN A CONCAVE SURFACE BOUNDARY LAYER
R.I. Crane and S.H. Winoto

Department of Mechanical Engineering,
Imperial College of Science and Technology,
Exhibition Road,

London SW7 2BX,
U.K.

SUMMARY

Local measurements of mean and fluctuating velocity, by laser anemometer, have been
made inside the the developing concave surface boundary layer in a free-surface water
channel at Reynolds numbers Re (based on channel width) up to 16000, Concave surface
radius was 3.5 times channel width and the ratio of spanwise mean boundary layer thick-
ness to surface radius ranged between 0.03 and 0.11.

Systems of longitudinal vortices developed without artificial triggering. Vortex
wavelength varied across the span by as much as a factor of 2, but mean wavelength was
typically 1.3 times the boundary layer thickness and did not vary significantly in the
flow direction. Continuous vortex growth at Re = 9800 contrasted with apparent break-
up of the vortices at Re = 16000, Maximum amplitude of the transverse variation in
longitudinal mean velocity did not exceed 10% of potential wall velocity upy,; momentum
thickness varied across the span by a factor up to 4. Lateral mean velocity parallel
to the wall had a maximum amplitude typically 3% of Upy and lateral fluctuation intensity
was generally greater than 40%.

LIST OF SYMBOLS

channel width
water depth
voltage proportional to,Doppler signal frequency representing u
GBrtler number Reg(6/r)* N N
7 turbulent G8rtler number (upy6/0.018u,8 )(0/r)*
concave wall radius
Rey bulk flow Reynolds number ujia/v
Reg momentum thickness Reynolds number u,,9/v
u,v,w velocity components in ¢, y, z directions respectively
up bulk velocity (volume flow rate + ab)
value of u in potential core and linear extrapolation into boundary layer

NOogQod oo

P

Uy u_at y =0

y,z coordinates defined in Fig. 1(c)

§ boundary layer physical thickness

§* boundary layer displacement thickness

0 boundary layer momentum thickness

A vortex wavelength

v kinematic viscosity

¢ angular coordinate defined in Fig. 1(c¢)
subscripts

av value averaged between wave crest and trough positions
1 value at boundary layer edge

superscripts

mean value of fluctuating quantity

r.m.s, value of fluctuating quantity

value at crest position in u(z) distribution
value at trough position in u(z) distribution

<> -1

1. INTRODUCTION

An upsurge of interest in concave surface boundary layers in recent years has arisen
from the inability of current calculation methods to make satisfactory predictions of
flows with significant curvature. One application of considerable importance 1s the
estimation of heat transfer and skin friction on the pressure surfaces of turbine blading,
where curvature, acceleration and high turbulence intensity combine to produce rather
complex boundary layer behaviour. In particular, the de-stabilising influence of concave
curvature gives rise to strong three-dimensional effects. The occurrence in turbulent
layers of systems of longitudinal vortices, analogous to G8rtler vortices in .laminar
layers, is now well established, having been first observed by Tani (1). Subsequent
investigations, notably those of So and Mellor (2) and Meroney and Bradshaw (3), have
revealed details of the turbulence structure in boundary layers which were well developed
before encountering concave curvature, without much emphasis on the vortex pattern itself.
With sufficiently strong curvature, the gquasi-steady vortices will exert a strong
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influence on mass, momentum and heat transfer; their geometry, strength, etc. there-
fore require more detailed study.

The work reported here is an extension to higher Reynolds numbers of an experimental
study of GBrtler vortices (4, 5) aimed at determining the distribution of longitudinal
and lateral velocity within the vortices. Using a water channel with only a short
straight length upstream of a constant-radius 90° bend, curvature parameter §/r (ratio
of boundary layer thickness to concave surface radius) was of order 0.1 in a developing
duct flow with a potential core. This curvature is similar to that of ref., (2), in
contrast to values around 0.01 in ref. (3). The Reynolds number Res, based on channel
width a (40 mm) and bulk velocity up, has so far been limited to 16000, an order of
magnitude less than those of ref. (2) and (3). A study of the effects of controlling
and systematically varying the vortex wavelength X is in progress (to complement current
work by Bradshaw (6)), but the present results are confined to vortices developing
naturally without artificial triggering. The use of laser Doppler anemometry has reduced
the possibility that spatial averaging (as with a hot wire) will mask such features as
sharp troughs in transverse distributions of velocity, and has also avoided any physical
interference which could alter the unstable flow pattern.

2., EXPERIMENTAL DETAILS

A block diagram of the flow circuit is shown in Fig. 1(a), the heat exchanger being
necessary to maintain a constant water temperature over a period of several hours opera-
tion. Water is pumped through multiple hoses into a bank of glass balls at entry to
the Perspex channel, to provide a reasonably uniform flow into the settling chamber.
Three gauze screens are followed by a 5:1 contraction and a straight channel section of
length 1.4a. The 90° bend, with outer wall of radius 3.5a, is constructed from 3 mm
thick walls set in machined grooves in a 15 mm thick base , with ties at the top of the
walls to maintain their spacing. Downstream of the bend, a 2.8a straight section is
followed by a diffuser and a chamber of similar dimensions to the settling chamber. The
polished surfaces are hydrauically smooth, with special attention paid to the joint
between contraction and concave wall. The channel base is mounted on a milling table,
to give two-dimensional motion in the horizontal plane, which in turn is attached to the
cantilevered platform of a vertical traversing device.

A free-surface channel was originally chosen to facilitate flow visualization at any
desired position, so the effective aspect ratio b/a is determined by the depth b of water.
In the present work, b/a was 3.5, a compromise which allowed a reasonable Reynolds
number to be obtained with a given pump capacity while avoiding unacceptable secondary
flow effects. Guided by hydrogen bubble visualization (in a range of flow rates limited
by bubble buoyancy at the lower end and rapid dispersion at the upper end), it was found
that the longitudinal vortex system was not noticeably affected by end-wall secondary
flow in the central 70% of the span.

Fig. 1(b) shows the flixed laser anemometer system in relation to the test section.
The fringe mode of operation was used, with a beam crossing half-angle between 6.9° and
7.4° (depending on the proximity of the curved wall to the integrated optical unit),
giving a calibration factor between 504 and 544 kHz per m/s. Dimensions of the beam
intersection volume were approximately 1.5 mm and 0.2 mm in the normal (y) and longitu-
dinal (¢) directions respectively. Transfer of measurements from the longitudinal (¢)
velocity component u to the transverse (z) component w was effected by rotation of the
integrated optical unit and polarised laser. An attempt was made to detect the sign of
w using a rotating diffraction grating, but this requires further development to give a
sufficiently steady frequency shift to match the low magnitude of this velocity component.
All signal processing was carried out by a frequency tracker, most data points being
obtained from five successive integrating periods of ten seconds each.

In view of the problems of measuring the streamwise pressure distribution directly at
low flow speeds, and of avoiding too much obstruction of the laser beams by tappings
etc., the distribution has been indicated by the variation in potential wall velocity
upw; this was obtained by extrapolating to the wall the linear portion of the velocity
profile in the inviscid core flow.

Coordinates and dimensions are defined in Fig. 1(c), representing top and side views
of the test section.

3. MEASUREMENT PROCEDURE

The measurements reported here were made at nominal Reynolds numbers Re, of 9800 and
16000, Traverses in the z-direction were made at several distances from the concave wall,
the closest approach possible with the present optical arrangement being y = 1 mm. Having
identified crests and troughs in these transverse velocity distributions, profiles in the
y-direction were measured at the corresponding z-positions. Chosen streamwise stations
ranged between a position 0.68a upstream of bend entry, and ¢ = 76°. Checks were made
to determine the repeatability of the vortex positions.

4. RESULTS AND DISCUSSION
Examples of velocity profiles at bend entry are shown in Fig. 2. The longitudinal

pressure gradient on the concave wall is indicated by the distribution of potential wall
velocity up, in Fig. 3. At Re, = 9800, the resulting boundary layer thickness § was
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measured as 0.13a at ¢ = O and 0.37a at ¢ = 76° (defined by the y-position where
u/u_(y) = 0.99). Whereas previous work on this topic has largely dealt with boundary
layers developed on long straight surfaces upstream of the bends, the present work is
concerned with flows much closer to transition, relying on the curvature and the
region of adverse pressure gradient at bend entry to produce a turbulent layer in the
downstream part of the bend. A comparison may be made with data on critical values of
the GBrtler number ¢ = Reg(8/r)*? at transition; cascade measurements quoted by Kan et al.
(7), for example, suggest completion of transition at ¢ = 7, while Liepmann's (8) zero
pressure gradient data on constant curvature surfaces, with low turbulence levels,
indicated transition at ¢ values between 6 and 9. Present data for spanwise-averaged
momentum thickness 85, at ¢ = 570 give ¢ = 13 at both Re, = 9800 and 16000 (having
earlier exceeded 20 at the higher Re,)

longitudinal vortices developed without artificial triggering, at least three pairs
being detected at each station. No evidence of a similar structure was found in the
convex wall boundary layer. To aid subsequent discussion, an idealized vortex system
is shown diagrammatically in Fig. 4. Vortex wavelength A was found to vary across the
span by as much as a factor of two, but the positions of the crests and troughs in the
transverse variation of the mean velocity @ did not vary significantly in the ¢-direction.
Mean wavelength Agpe found by averaging the distances between consecutive crests and
between consecutive troughs at each station was approximately 21 mm at Re, = 9800, 19 mm
at Rez = 16000, these being around 1.3 to 1.6 times the local average boundary layer
thickness 6,,. An exception occurred at R,, = 16000, ¢ = 76°, where the vortex pattern
appeared to ge breaking up. At this station, vortex positions were no longer repeatable
from run to run and were less clearly defined, some longitudinal velocity distributions
giving the impression of a wavelength as low as 11 mm while the variation in lateral
component suggested wavelengths similar to those further upstream. The disturbances which
are amplified into the observed vortex system are probably related to some physical
feature of the channel (as yet unidentified). To determine if this is so, or whether the
vortices are amplified selectively from a broad spectrum of initial disturbances (as
predicted for laminar flows), vortex generators are now being placed in the contraction,
sized so as not to influence the vortex strength. Early results, indicating some
suppression of the natural wavelength in favour of that imposed by the generators,
suggest only weak selectivity.

By analogy with Smith's (9) calculated stability diagram for laminar flows, Tani (1)
indicated the degree of instablity in his flows by plotting the data on an equivalent
chart, in which G8rtler number ¢ was replaced by the so-called turbulent GBrtler number
Gp. This was defined using eddy viscosity ve in place of molecular kinematic viscosity,
with v, taken as 0.018 u;8" where u; is the velocity at the boundary layer edge. Fig.

5 shows the present data, using spanwise mean 6 and 8", to be well inside the unstable
region on such a diagram. (The dashed line indicates the uncertainty in i.)

Fig. 6 and 7 show examples of the distributions of mean streamwise velocity u,
estimated uncertainty being *2%. The striking difference between these results and those
for GBrtler vortces in laminar boundary layers in the same channel (4, 5) is in the
amplitude of u(z); here, this amplitude did not generally exceed 10% of u,,, compared
with values up to 40% in laminar layers. The only exception was 19% of upy, at Re, =
9800, ¢ = 769, y = 1 mm, where the high mean velocity gradient and greatest possible
fractional error in v could increase considerably the uncertainty in amplitude. Measure-
ments closer to the wall, not feasible with the present optical arrangement, might reveal
larger amplitudes, but in laminar layers the peak amplitude occurred in the region of
y/8 - 0.5, At Re,= 9800, an increase in the maximum value of amplitude (4 - 1) from
0.045u, . to at leasl 0.08u,  between ¢ = 570 and 760, indicated continuing vortex growth,
whereas at Re, = 16000, vortex strength as measured by this maximum amplitude of around
0.0Gqu,appeared approximately constant over the same distance. The shape of the trans-
verse distributions, with crests and troughs of roughly equal sharpness, is similar to
those in laminar flows (5) at Rez = 2300 and below, but is markedly different from some
of those measured at Rez = 3800 (5) which featured flattened crests and sharp troughs,
unsteady in their spanwise positions.

Momentum thickness calculated from the profiles (defined here as /[ (u/u ) (1-u/up)dy
where u,(y) is the potential velocity, extrapolated from the core flow) shgwed a marked
variation across the span. At the lower Re6 the ratio of 6 at a trough position to that
at a crest was 1.7 at ¢ = 57° and 4.1 at 76~ ; corresponding ratios at Re, = 16000 were
2.2 and 3.6

Profiles of r.m.s. Doppler signal e', as a percentage of the local mean signal e,

in Fig. 8 shows that fluctuation intensity is generally greater at wave trough positions,
where fluid is being swept away from the wall. Except where shown by the scatter band,
the scatter in five repeated measurements is contained within the width of the plotted
symbol; the uncertainty in each measurement is estimated as *2% of e'. The relationship
between e'/€ and u'/u may be gauged from estimates of spectral broadening caused by the
mean velocity gradient and finite particle transit time in the measuring volume and by
instrument noise. Typical values at Re = 16000, ¢ = 760 are such that e’/ = 1.8% in
the potential core becomes u'/7 = 1.7%, while e'/e = 8.6% at y/a = 0.1 becomes u'/T =
8.5%. Measurements of turbulent energy spectra are in progress at the time of writing.

Examples of the limited number of measurements of transverse mean velocity magnitude
|%| are presented in Fig.s 9 & 10. Unlike the case of laminar flows, crests and troughs
in the w(z) distributions are not aligned, in general, with 'mean" positions in T(z),
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and vice versa; this indicates a rather distorted vortex pattern. However, profiles
normal to the wall, at positions of maxima in |w|(z), are closer to the idealized
pattern. No particular directional meaning is implied in the w(y) plots; however,

the change of sign shown near y/a = 0.2 was indicated by a reduction of the Doppler
signal below the detectable level in this region. No significant trend in the amplitude
of w(z) could be detected, typical values of amplitude being 0.0Zqu to 0.03upw at
distances from the wall where peaks in the W(y) profiles were found. In laminar flow at
Reg = 2300, w amplitudes (expressed as a fraction of upw) at least twice these values
were found.

Measurements of w', the r.m.s. value of the fluctuating part of w, were limited by
the fact that, at the low values of w in these flows, intensities w'/% greater than
about 40% cannot be handled without frequency shifting. At Re, = 16000, intensities
less than 40%, but still greater than 30%, were found only for 0.05< y/a < 0.15at ¢ =
57°; at ¢ = 76° the limit was exceeded over the whole boundary layer. Almost all data
at Re, = 9800 were in excess of the limit. These results are consistent with unsteadi-
ness in the spanwise positions of the vortices, on a small scale.

5. CONCLUSIONS

Details of the longitudinal vortex structure have been revealed by use of a non-
disturbing velocity measurement technique. Vortices developing without artificial
triggering were found to have a mean wavelength of the order of the boundary layer
thickness, as found in other investigations. Their mean lateral positions were repeatable
except near the bend exit at the higher flow rate, where signs of break-up appeared,
in contrast with continued vortex growth at the lower flow rate.

Amplitudes of the transverse variation in longitudinal and lateral mean velocity,
the former reaching 10% of the potential wall velocity, were considerably less than
in laminar GBrtler vortex flows in the same channel; momentum thickness varied
laterally by up to a factor 4. Longitudinal turbulence intensity varied laterally
in a manner consistent with the vortex flow pattern, while the lateral intensity was
generally in excess of the 40% (approx.) limit of the present instrumentation.

Future work will include an examination of the factors controlling vortex wavelength,
and more detailed study of the apparent breakdown of the vortex structure at increased
Reynolds numbers,
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OF AN INCOMPRESSIBLE THREE-DIMENSIONAL
TURBULENT BOUNDARY LAYER

by
J.D.Vagt and H.H.Fernholz

Hermann-Fottinger-Institut fur Thermo- und Fluiddynamik
Technische Universitdt, 135 Strasse des 17. Juni
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SUMMARY

Comprehensive measurements of mean and fluctuating velocities and shear stresses in three-dimensio-
nal boundary layers are urgently needed to establish turbulence models for the computation of boundary
layer flows. The aim of the present investigation has been to provide such measurements and to develop or
improve measuring techniques for such measurements, especially in the near-wall region of a pressure-driven
three-dimensional boundary layer on a curved wall. This report describes measuring techniques and associated
probe effects being due to (a) aerodynamic interference, (b) strong curvature of the streamlines in the
inner region of the boundary layer, (c) wall effects on the hot-wire and the cobra probe signals, (d) low
mean flow and high turbulent intensities close to separation, (e) problems related to accurate measurements
of the distance between a hot wire and the wall, and (f) manufacturing problems of hot-wire probes.

1. INTRODUCTION

Comprehensive measurements of mean and fluctuating velocities, shear stresses and of skin friction
in three-dimensional boundary layers are still rare but are urgently needed to establish turbulence models
for the computation of boundary layer flows. The aim of the present investigation has been to provide
such measurements in a pressure-driven three-dimensional turbulent boundary layer with special emphasis on
the region close to the curved wall. Measurements have already been presented in tabulated form in
Fernholz et al.(1l), and a detailed discussion of the results will be published at a later date. The pre-
sent report describes the measuring techniques and associated probe effects giving special attention to
probe-flow interference.

Substantial aerodynamic interference effects were observed when hot-wire probes were used in a turbulent
boundary layer with the stem inclined to the wall at an angle of 5 to 10 degrees. These effects could be
explained, and were eliminated by developing a family of probes with single normal, slanted and crossed
wires which kept disturbances of the highly curved flow to a minimum.

Flow angles were measured by means of hot-wire probes and twin-tube yawmeters, and a comparison of the
results indicated severe aerodynamic interference effects when the latter probes were used in the near-
wall région.

Anomalies of the mean velocity distribution in the inner layer led to the detection of errors in the deter-
mination of the absolute distance of the hot wire from the wall. Since 'in situ' measurements of the
hot-wire distance from the wall could not be carried out due to access problems in the test section, an
indirect measuring technique was developed to determine this distance with an accuracy of + 0.01 mm.
Finally, measuring techniques (and, where possible, their accuracy and repeatability) are discussed for
the components of the Reynolds stress tensor and the skin friction.

2. EXPERIMENTAL ARRANGEMENT AND FLOW CONFIGURATION

A description of the wind tunnel used in this investigation was given by Vagt(2). It is a low-
speed blower tunnel with a 12 KW motor and centrifugal fan, an airfilter intake and a 2 m Tong settling
chamber with two wire-gauzes (open area ratio 38 %) followed by an 11:1 axisymmetric contraction (Fig.1).
A carefully organized programme of adjustment of the screens resulted in a uniform exit velocity so that
local mean velocities U_in the core of the flow varied at most by + 1.5 % with a turbulence intensity
(T )Y/%/U_ of 0.10 % Tn a frequency range up to 10" Hz. A1l measurements were performed at a test sec-
tion inlet We10c1ty of about 18 m/s, and the Reynolds number Ujpjet/v = 1.23 x 10° per meter was kept
constant. The Taboratory was airconditioned (room temperature constant at 22 + 0.5 C) in order to minimize
the drift of hot wires and transducers. -

The test section consisted of a sting-mounted horizontal inner cylinder (0.25 m diameter, 1.55 m long and
made of Ultramid S) with an elliptical nose cone and a concentric perforated outer cylinder with 0.60 m
diameter. Pitot tubes and hot-wire probes, mounted on an electrically driven traverse gear, were intro-
duced into the test section through a slot along a generator of the wall of the outer cylinder. The
traverse gear allowed precise linear (incremental resolution 0.005 mm, system Heidenhain) and angular
(resolution 0.09 degree) movements. Surface fences, (5 mm diameter) protruding approximately 0.10 mm

from the surface of the inner cylinder (Vagt & Fernholz(3)), alternated with static pressure tappings

(0.8 mm diameter) along a generator of the inner cylinder. By turning the inner and/or the outer cylinder
measurements could be made with the wall probes at fixed positions x along the circumference and with the
other probes at any position in the flow field covered by a turning angle of about 30 degrees.

At the downstream end of the annulus a back plate was fitted to control the width of the flow exit and the
axial pressure distribution in the test section. By inclining this back plate so that it was no Tonger
normal to the axis of the cylinder the circumferential pressure distribution in the downstream half of the
annulus could be made asymmetric, causing the originally axisymmetric boundary layer to become three-
dimensional. A schematic diagram of the flow is shown in Fig.(2). The turning of the boundary Tayer
causes flow deflections of up to 31 degrees near the wall, and the curved flow can bring about aerodynamic
interference effects which substantially affect probe signals.

The flow direction outside the boundary layer is almost parallel to the axis of the cylinder, with a maxi-
mum angle of incidence in the xz-plane of about 2 degrees, and an upwash angle of about 5 degrees. It is
a consequence of using a perforated outer cylinder that the flow deflection in the freestream is very small.



10-2

The test boundary layer was thickened artificially by a tripping device mounted on the circumference of
the cylinder at the downstream end of the nose-cone. This consists of a strip of Oymo tape with the
letter V printed at intervals of 4 mm with the apices pointing upstream. The tape is 0.40 mm thick and
the overall height of a printed V is 0.65 mm.
The development of the boundary Tayer from axisymmetric to three-dimensional is shown in Fig.(3) where we
have plotted the free-stream ve10c1ty ug, the skin-friction and the flow angle 8, at a distance

= 0.15 mm from the wall which is the angle measured closest to that of the Timiting streamline. A
description and interpretation of the mean and fluctuating flow measurements in this three-dimensional
boundary layer with a strong adverse pressure gradient will be published elsewhere. The measurements can
be found in tabulated form in a report by Fernholz et al.(1).

3. HOT-WIRE INSTRUMENTATION ANO PROBES

Mean and fluctuating velocities were measured for the most part by means of probes with either a
single normal wire or crossed wires. These wires were specially developed for this investigation, and
operated by means of DFVLR (HDA III) constant-temperature anemometer units (Froebel (4)). The calibration
curves were linearized by a polynomial Tinearizer (Froebel (5)) which provided a very good approximation
in the velocity range investigated (3 to 30 m/s). For the measurements of flow angles the anemometers were
connected to OFVLR integrators (Froebel(6)) allowing integration times up to 1000 s. These integrators have
an input impedance of 10 M @ , and the main unit is a temperature-compensated field-effect transistor (FET)
amplifier with a very high amplification and capacitive feedback. For measurements of velocity fluctuations
the anemometers were used in conjunction with a turbulence-intensity measuring device (Froebel & Vagt(7))
which provided r.m.s. values,sums,differences and divisions of signals. The signals were read into a tele-
type unit by means of a data transfer unit (Schiumberger DTU) - connected to a digital voltmeter (Schlum-
berger A220) - punched on a paper tape and finally evaluated on a HP 1000 computer.

The hot wires were calibrated in the free stream of the test section at a position (x=531 mm, ¥ = 00) where
the turbulence Tevel was Tess than 0.003 and where the velocity was constant in a range 20 <y <140 mm
normal to the wall.

The flow velocity was measured in the same plane by means of a Pitot-probe (1 mm diameter) and a static
pressure tapping and evaluated by an automatic micro-manometer with a resolution of 0.01 mm water column
(Froebel & Vagt(8)). The hot-wire calibration curve was checked after each profile measurement. It turned
out to be very stable indeed due to the air filters and the temperature control in the Tlaboratory.

The single and cross-wire probes were designed to cause as Tittle aerodynamic interference as possible, and
their design and manufacturing process was described in detail by Oahm & Vagt(9). Figure (4) shows a
sketch of a single normal, hot-wire probe. The distance between the prongs is 4 mm and their length

10 mm. The hot-wire consists of a central sensitive section of platinum-coated wolfram wire, 5 ym in dia-
meter and 1.3 mm Tong. The gold-plated end sections are approximately 30 u m in diameter and are soldered
to the prongs which have the same diameter at the tip as the plated wire. The ratio of "active" wire
length to diameter is 260, the nominal wire resistance 6 & at 22,50 C and the resistance of the prongs and
the electrical leads approximately 0.5 & . The wires were operated at a resistance of about 1.7 times the
cold resistance.

The influence of aerodynamic interference on the probe signal was investigated by using the "rotation test"
described by Comte-Bellot et al.(10). If the normal-wire probe rotated through 900 about the wire axis
from the position in which the stem is aligned with the mean flow direction. (i.e. to a position normal to
the flow direction) then the mean velocity measured by the hot-wire increases by 2.3 % in the velocity range
up to 30 m/s. This is slightly higher than the value given by(10) and Strohl & Comte-Bellot(1ll) for their
reference probe A with very long prongs but Tower than for their probe E which is similar to our probe. An
extrapolation of the results of Comte-Bellot et al.(10) shows that the aerodynamic disturbance due to the
stem increases the velocity by approximately 0.3 % while that due to the prongs (for a prong diameter at
the tip <0.3 mm and a prong spacing larger than 3 mm) brings about an increase of about 2 %, the two
effects adding up to the figure of 2.3 % quoted above. Bissonnette & Mellor(12) have also used a hot-wire
probe with the stem normal to the wall. Our investigation confirms their suggestion "that interference
effects need not be too critical", if the hot-wire probes are properly designed.

The cross-wire probe is shown in Fig.(5a). Stem and prongs have the same size as those of the normal-wire
probe. The gap between the two wires is 1 mm in order to avoid effects of thermal wake interference
(Guitton & Patel(13)), and the distance between the prongs is again 4 mm. The aerodynamic interference
test - though not as detailed as that of(10) - agreed with their results in general and showed that the
probe signals were not seriously affected in the probe positions used in the investigation.

Special care was taken during the soldering process to make sure that the wires of all probes were neither
slack - which would cause changes of the calibration curve of a slanted wire - nor under tension when
heated - which would cause strain gauge effects caused by a transfer of prong vibrations to_the hot wire.
The slanted-wire probe (Fig.5b) used for the measurement of the Reynolds stress component v'w' is dis-
cussed in section 4.1.

4. MEASURING TECHNIQUES
4.1 MEAN AND FLUCTUATING VELOCITIES

In a three-dimensional boundary layer the velocity vector isdetermined by its coordinates X,y,z
in the flow field, its flow angle and its magnitude. If a hot-wire probe is used to measure flow angle and
magnitude of the velocity, a number ofproblems occur when such measurements are carried out in the immediate
vicinity of the wall, say for the dimensionless wall distance y* < 40 (y+ U y/v , where u, is the skin
friction velocity (< p)1 2, v the kinematic viscosity and y the distance norma] to the wa11) Since our
measurements were performed in a boundary layer with a severe adverse pressure gradient, the problems were
aggravated by the high turbulence Tevel in the boundary layer which reached values up to 60 %.
Mean and fluctuating velocities were measured with single normal hot wires, with slanted hot wires, and
with cross-wire probes.

In the case of mean flow measurements, we were worried most by_the high turbulence Tevel in the severe
adverse pressure gradient. Measurements of the mean velocity u can be corrected by taking into account
higher-order terms of the so called wire-response equation (e.g. Vagt(14), eqn. 8.10). However, this
contains triple correlation terms of the velocity fluctuations u' and w' which are difficult to measure.
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This means that it is still rather complicated to correct hot-wire signals in highly turbulent flows and
that we must be content, at least at present, if the data measured by a hot wire and by Pitot tubes, which
respond in very different ways to high levels of turbulence, show satisfactory agreement. We have there-
fore compared mean-velocity data obtained by round and flattened Pitot tubes and a single normal hot wire
in Fig.(6). These measurements were performed at x = 1014 mm, well into the adverse pressure gradient
region, on one of the two Tines of symmetry of our flow configuration where the flow was aligned with the
axis. — 1/2 _

The Tocal turbulence level (u' © ) / /u is very high, reaching the above mentioned 60 %, but agreement
between the velocities measured by the various probes is surprisingly good. The open circles represent
hot-wire data before the distance between the wall and the hot-wire could be determined more accurately,

as described in section 4.2, and the full circles the data where the wall distance was corrected by 0.10 mm.
Data obtained with the larger flattened Pitot tube 1ie consistently below the other data for reasons which
we are unable to explain.

A further need for correction may arise from the influence of the wall acting as a heat sink for the
approaching hot wire. Oka and Kosti€(15) have demonstrated this effect very clearly in Fig.(7) where velo-
city measurements in the viscous sublayer (y* <10) lie considerably higher than they should according to
the universal relationship u* = y*. The upper curve is likely to be valid only for the particular wall ma-
terial used in the experiments and probably for the type of hot-wire used. It must be obtained therefore
for each experiment individually.

For our pairing of wall material and hot-wire probe the "heat sink effect" became noticeable at a wall
distance of approximately 1.50 mm (cf. section 4.2) at zero flow velocity. But even at much smaller wall
distances (y* >4 compare Fig.(10) and y >0.15 mm compare Fig.(6)) forced convection appears to have
dominated the heat transfer from the wire, so that the "heat sink" effect is much less severe than in the
case investigated by Oka & Kostié(15). For this reason it was decided not to correct the hot-wire data for
wall effects.

A11 probes were set along the local flow direction which was determined by a hot wire as described in sec-
tion 4.3, and the measurements were presented in tabulated form accordingly(1). -
The normal component u'? was measured by a single normal wire in the usual way. The G'w' term was obtained
at first by means of a cross-wire probe, the wires of which lay in xz-planes one millimeter apart to avoid
interference of the thermal wakes. The effective location of the measurements is then assumed to be half-
way between the two wires, which is correct for the outer region but does not hold for the inner region
where shear gradients are large. We have therefore used a single normal wire set at + 450 to the mean flow
direction. If the hot wire is calibrated in either of these two positions, u'w' is determined from

o= (22 @T- o y-kyl (4.1.1)
there e' denotes the voltage, K a calibration constant; and 1 and 2 denote the two wire inclinations. Using
a single wire also avoids an incorrect alignment of the cross-wire probe with respect to the flow angle
which is different for the two wires, having a large gradient in the near-wall region.
The output signal of any hot-wire probe inclined to the mean flow can be affected greatly by vibrations of
the wire (strain gauge effect) caused by a periodic shedding of eddies from the prongs. Since the resonance
frequency of our probes is known to be at about 8000 Hz the hot-wire signal on the oscilloscope was
checked beforehand whether such a strain gauge effect occured (see Vagt(14)). If this was the case the
tension of the wire was reduced to about zero under heating conditions.
The yaw-parameter k was found to be very small for flow angles less than 70° and could therefore be neglected
for this hot-wire probe (Dahm & Vagt(9)).
The normal stress component w' % was determined from the single normal wire, this time in three positions
(the third, normal to the flow, to obtain u'?2), via the relationship 2

i = [0 B)yY @z ey -] (K 4.1.2

W [(K )L (e +e2) - U2 ] (-7 ( )
This method had again the advantage that the wire was in one plane only.
No corrections were introduced to account for the high turbulence level since the triple and quadruple corre-
lation terms necessary for such a procedure were not measured. The data could be corrected as follows
(Vagt(1i4)) with k=0:

U2 by the factor [1 + (UW'2 / 02 Q) ]'1

e [1- @Twzae @)™ (4.1.3)
and

™' by the factor [1 + 0.5 (Wu'Z /a'w' Q) ]'1.

Both the normal-stress component v'Z and the shear-stress component U'v' were measured by means of a cross-
wire probe, now in the xy-plane, where the goose-neck lay in a plane at approximately 90° to the flow direc-
tion. This arrangement minimizes aerodynamic interference effects. The two wires of the probe were aligned
approximately at + 450 to the flow direction and the probe stem was inclined at 2.59 to account for tge
average upwash angle. This angle varied across the boundary layer from zero at the wall to at most 5 at the
boundary layer edge, but our probe-driving device could not be adapted continuously to changes in this
direction. However, deviations of 2° from the true upwash angle caused errors of 4 % at most at the outer
edge of the boundary layer. Values of u'v' were measured by the same probe (longer integration times were
necessary in this case) but here deviations of the pitch angle caused slightly larger errors, 4 % on average
and 7 % maximum error. The projections of the wires on the xz plane were parallel to the projection of the
mean flow vector passing through the mid point between the two wire projections. For the evaluation of

v'Z and U™V the following relations were used:
VZ = (1 K2) (8] - e)? /2 (1-k2)?) (4.1.4)
and
. -1 T -3
UVt =2 K2(1-K2) )T (e - g2 ), (4.1.5)

with wires at flow angles a= + 45, k as the yaw parameter and K as a calibration constant.
Corrections for high turbulence levels can again be taken into account by multiplying

v'Z by the factor [1 - (VZWZ) / (V2 ou2) ]_1
and
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u'v' by the factor [1+ 0.5 (Vw2 / u'v' u)] s (4.1.6)
k is assumed to be zero. .
The measurement of the term v'w' is more difficult than that of the other components since, at first sight,
the hot-wire array needs a rotatable probe stem lying in the direction of the mean velocity vector. Such
a probe arrangement - as first used by Johnston (17) - may, however, cause aerodynamic interference effects
in a highly curved flow (cf. Fig.12) which are probably made even worse by the probe holder. In this con-
text attention should be drawn to the probe arrangement used by Elsenaar & Boelsma(18) where we would have
expected aerodynamic interference effects to occur also.
To avoid this difficulty the slanted-wire probe shown in Fig.(5b) was developed. This could be introduced
into the flow with the stem perpendicular and the plane of the gooseneck across the f]og; the prongs are
then parallel to the xz-plane. When the angle y_ is zero the slanted wire is set at 45  to the flow direc-
tion in the xy-plane, y, being the angle between®the projections of the wire and the mean flow velocity
vector in the xz-plane.  The wire had to be rotated into four different positions - determined by y, - in
order to obtain the signals necessary for the evaluation of v'w' . This was done by the following relation-
ship S — —_— 1 — -
! = 12 - al2 12 - el2 .

viw' = [eY2=]350 ey 3150 + (/2) (ey2=0° eY2=]800ﬂ
_ (4.1.7)
4 [(1 - 0.25(1 - k2)) - [K3(1 - k2)? V2Tl

Special emphasis was laid upon avoiding aerodynamic integference effects which could be confined for this
probe to a range of the angle of rotation y, of about 36 . So the probe signals were not affected by distur-
bances from the prongs at the positions needed in eqn.(4.1.7).

Bissonnette & Mellor(12) also used a 45° slanted-wire probe, but with vertical prongs and stem which was
rotated continuously with signals being recorded on an xy-plotter. For a comparison between fixed and rotat-
ing hot-wire probes and the corresponding signal evaluations the reader is referred to Pierce & Ezekwe(19).

4.2 WALL DISTANCE

The measurement of the absolute distance between a measuring probe and the wall needs a certain

amount of care if circular or flattened Pitot probes are used but it causes serious problems in the case

of a hot-wire probe which can get closer to a wall than any other measuring device. As will be shown below,
a difference in wall distance of 0.1 mm influences the interpretation of velocity measurements in the near-
wall region greatly and leads easily to wrong conclusions. Therefore it is astonishing how little inform-
ation is available about the determination of the wall distance,

Wills(20)claims that he was able to read the distance of a hot wire to an accuracy of 0.00127 mm on a micro-
meter head, and obtained the zero distance by viewing the wire and its reflection in the test wall through

a microscope and a 459 mirror, the distances between the two images being measured on a graticule in the
eye-piece. Van Thinh(21) observed the distance of the wire from the wall by means of a microscope situated
on the other side of the glass test wall. In the first case the wall must be reflecting, in the second
transparent. If neither of these conditions is given, a method described by Orlando(22) can be used. There
a "wall-stop” soldered to the probe stem prevents the wire from being accidentally damaged by the wall. The
~distance of the wire from the wall when the wall stop makes contact was measured by an optical comparator and
set nominally to 0.127 mm with an accuracy of approximately 0.025 mm.

Finally Hebbar & Melnik(16) report on a combined optical-sighting-electrical method which is similar to the
distance measuring techniques described below and used in our own investigation. Their method is, however,
confined to probe arrays where the prongs emerge from the test wall and to non-conducting walls since the
plated ends of the hot wire must touch the wall in the measuring process.

Our measuring technique can be applied to all cases where the probe is introduced into the boundary layer
from the free stream. The calibration curve holds for our family of hot-wire probes in connection with

the specific wall material but an extension of its validity to geometrically similar probes should be
possible. For the application of this technique one must be sure - and we have ascertained this - that

the hot-wire axis is straight and lies always parallel to the surface.

The calibration procedure ran as follows. The normal-wire probe was calibrated in the free stream for the
velocity range investigated - i.e. zero voltage output for zero velocity and 10 V output for the maximum
velocity - and connected to an r.m.s. meter and an oscilloscope. The oscilloscope served to detect large
oscillations which gave an indication of the proximity of the wall since they occured just before the wire
touched the wall. They were due to relative movements between the wire and the test wall caused by "natural”
vibrations of the laboratory building.

With the wind in the test section switched off, the output voltage was at first zero when the hot wire was
moved from a fixed arbitrary, relatively large distance towards the wall. Close to the wall - in our case

at about a distance of 1.5 mm - the wire feels the cooling effect of the wall. The output signal plotted
against a relative value Ay of the wall distance increases, reaches a maximum and falls off again. Fig.(8)
shows two typical output distributions in the immediate vicinity of the wall and some shapes and configu-
rations of wires and prongs after contact with the wall. The datum points beyond the maximum are 1lower
again because the wire is further away from the wall than at the maximum output due to probe deformation
after the contact with the wall. From careful measurements of these deformed probe configurations and the
wire behaviour close to the wall - some probes had to be destroyed voluntarily - we could define the position
of the wire relative to the wall with an accuracy of ¥ 0.010 mm. Thus the output voltage measured against
the relative distance could now be related to the actual distance from the wall, e.g. the effective voltage
u, = 1.75 V corresponds with a wall distance of 0.10 ¥ 0.01 mm (Fig. 9). Figure (9) shows the voltage output
clirves for all the hot-wire probes used. Since tight manufacturing tolerances could be maintained, the output
curves are almost identical for the chosen pairing of wall material and probe type up to an output voltage
of about 2 V. For higher output voltages, i.e. smaller wall distances slight inaccuracies of the probe geo-
metry or of the probe driving mechanism can cause deviations between the individual curves.

So, once the calibration curve for a pairing of hot-wire probe and wall material has been established the
determination of the absolute wall distance is straightforward: After the calibration in the free stream
the probe is moved towards the wall, with the wind switched off, until the voltmeter shows some output value
not far from the maximum but still on the "universal" calibration curve which is related to a certain absolute
wall distance. In our case this was 1.75 V equivalent to 0.10 ¥ 0.01 mm from the wall (Fig.9).
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Measurements with an accuracy of +0.01 mm can only be achieved if the traversing mechanism is aligned with
an accuracy better than that mentioned above and if the probe can always be traversed perpendicular to the
wall. The translational motion was transferred to the probe without any backlash. It had a travel of

200 mm with a resolution of 5 um. The traversing mechanism was mounted externally and independent of the
test section. Nevertheless, it is possible that the calibration may be changed when the wind is on but we
have no reason to suspect that this is the case.

As for the angular movement, a rotation of 360° with a resolution of 6 minutes was possible with this
arrangement.

Sgch accurate measurements of the wall distance were important only for velocity measurements in the region
y <40, as can be seen from Fig.(10). The behaviour of the uncorrected datum points in the near-wall region
which could not be explained by wall cooling effects on the hot-wire led us to suspect that we

might not have given enough care to the determination of the distance between the hot-wire axis and the
wall. The necessary correctiors were large indeed and brought the measurements back to the Tinear relation-
ship ut = y* for the viscous sublayer.

4.3 FLOW ANGLE

Before we discuss the problems which occur when flow angles must be measured in a turbulent bounda-
ry layer the reader's attention is drawn to the distinction between "mean direction of flow" and the
"mean flow direction" which was introduced by Rose(23). Quoting from Hebbar & Melnik(16), "the mean direc-
tion of flow in any plane is the time-averaged direction of the instantaneous component of the velocity
vector in that plane, whereas the mean flow direction is defined by mean-velocity components." Rose derived
a relationship for the difference between the angle of the mean direction of flow and that of the mean
flow direction Bm

- - e .
B - Bm = - az * (4'3'1)

s

For our measurements this correction would have changed 8 at most by 1 to 2° in the region where T'W'
reached its maximum and was therefore omitted.

Flow angles were measured by a modified version of the rotated hot-wire technique and for comparison by
cobra probes which are probably the best of the nulled direction probes (Dean(24)). The tubes of the two
twin-tube yawmeters (cobra probes) were chamfered at an angle of 35 or 550 in plan view and were parallel
to the text wall for about 10 mm. They then rose in a "gooseneck" before entering the outer cylinder per-
pendicularly. The tip of each probe was on the axis formed by this perpendicular stem. The 35° and 55°
ground tubes were 0.90 mm and 0.50 mm in diameter.

Unfortunately, the response time of the smaller probe was so long in this "Tow mean velocity", highly tur-
bulent flow region near the wall that integration times were too long for practical measurements. A1l
measurements with the cobra probe were recorded by means of a Statham transducer the signals of which were
integrated to obtain an average value in the highly turbulent region (due to a more efficient control me-
chanism the transducer was superior to the micromanometer system). Near-wall measurements of the flow
angle were not only hampered by probe size and response time but also because the cobra probe interfered
with the curved flow. This can be seen in Fig.(11) where measurements of the mean flow angle 8 are com-
pared. The two measuring techniques give good agreements in the outer region of the boundary layer but
differ by more than 30 % in the near wall region. The cobra-probe measurements may give the impression
that the alignment of the velocity vector close to the wall was constant whereas the hot-wire measurments
show a monotonic increase of the flow angle towards the wall. This agrees with the momentum equation for
curved flow, requiring an increase in curvature with decreasing velocity if the normal pressure in the
boundary Tayer is constant.

It is interesting to note that interference effects even between small hot-wire probes and the flow in the
near-wall region of a boundary layer can become substantial as shown in Fig.(12). The flow angle 8 was
measured with a single normal hot-wire probe, the stem of which was inclined at 5° to the wall in one case
(see Johnston(17)) and perpendicular in the other. The former probe gives flow angles which, close to the
wall, show a behaviour similar to that of the cobra-probe in Fig.(11), that is the flow angle is approxi-
mately constant. The stems of both cobra probe and inclined hot-wire probe affect the near-wall flow so
strongly that these measurements are not representative of the actual flow, which has a much higher deflec-
tion.

The "perpendicular" hot-wire probe shows, as_in Fig.(11), a monotonic increase of the flow angle towards
the wall. The assumption that the pressure p imposed on the boundary layer is constant in the y direction
is plausible, but cannot be proved satisfactorily by present experimental techniques for static pressure
measurements in the near-wall region, as was shown by Vagt & Fernholz(25). Nevertheless, near-wall measure-
ments of the flow angle by cobra probes or inclined hot-wire probes should be carefully checked for aero-
dynamic interference effects. They may explain the "mysterious" collateral near-wall flow, found for
example by Pierce & Krommenhoek(26) and Hebbar & MeTnik(16). The latter authors have used a hot-wire probe
the prongs of which were introduced vertically through the test wall as was suggested by Rogers & Head(27)
and also applied by Vermeulen(28).

Rogers & Head gave an indication of some aerodynamic interference in a range of about 70° from the original
position of the wire normal to the flow, but there is no information about the behaviour of this type of
probe with long thin prongs in a highly turbulent flow, especially for measurements far away from the wall.
In the near-wall region the above authors {27) found a monotcnic increase of the flow angle towards the wall
which indicates that aerodynamic interference effects should have been negligible.

Flow angle measurements with a hot wire are usually straightforward if the flow-angle characteristic of the
hot wire is symmetric so that the bisector method can be applied. At a fixed height y the wire is rotated
about the probe axis until maximum output voltage gives approximately the main flow direction. From this
position the hot wire is rotated until about half the maximum voltage is indicated on the voltmeter and the
corresponding angle is measured by means of a protractor. The voltage output is determined very accurately
by integrating up to 100 s and must then be found again on the opposite side of the hot wire flow-angle
characteristic. The mean of the two protractor readings is taken as the flow direction. This technique
can be applied to flows or flow regions not too close to a wall where the turbulence level is Tow (< 20 %)
and where temperature changes in the flow during the measurement of the flow angle can be kept small. A
typical flow-angle characteristic for such "easy" flows is shown in Fia. (13a). C1058 to a wall,however,
the flow angle characteristics become flat (Fig. 13b), and a terperature change of 1°C during the measuring
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period can cause an error of 4 degrees for the same output voltage on both sides of the maximum. For near-
wall measurements the flow temperature must therefore be kept constant within a very _small temperature range
in order to obtain accurate flow-angle data. Such a close temperature control (+ 0.1°C) is difficult to
achieve, and it is not surprising that the measuring time for one flow angle has been one hour in some cases.

The measuring time can be drastically reduced to about one minute by another technique which allows to perform
flow-angle measurements in flow regions where velocity fluctuations are large compared to the mean velocity
and/or where wall effects are severe. Here the flow angle is determined by means of the minima of the flow-
angle characteristics (Fig.14) as described below. Because of the high turbulence level, the hot-wire output
had to be damped by setting a time constant in a range from 1 to 25 seconds. Damping, i.e. large time
constants, causes the flow angle characteristic to become asymmetric and thus prevents the use of the bisector
method. :

The new technique needs a plot of the flow-angle characteristic at the measuring position over a range t 120°
so that the minima are clearly visible on the graph of an xy-plotter for example. For a fixed time constant
and a given speed of rotation of the probe the distance between the minima remains constant for all flow-
angle characteristics.

The measuring procedure is as follows: First, a reference flow~angle characteristic is measured in a flow
region where the flow angle is known, e.g. in the free stream, and the Tocation of this angle is determined
on the graph by calculating the mid point of the distance between the minima of this reference curve (in our
case this is curve a in Fig. 14). The characteristics b to e were measured at different heights y in the
boundary layer and the distances between the mid points between the respective minima and the location of
the reference flow angle gave the magnitude of the individual flow angle B(y). The scale of the abscissa,
where a unit length is related to degrees has to be determined at the outset of the experiment.

For the practical application of this method hot-wires must be inspected carefully under a microscope in
order to ascertain that the wire axis is straight, parallel to the wall (in our case normal to the stem),
and that the connection between the prong tips and the wire is carefully smoothed and polished after the
soldering process. ’

A further improvement of near-wall characteristics was obtained by amplifying the output voltage by a factor 3.
This is shown in Fig.(15) in which curve (1) represents the hot-wire signal as calibrated for the whole
velocity range at y = 0.10 mm and curve ) the same signal with amplification. But even then it is still
difficult to determine the minima of curve (2) accurately. Only when the wire was moved another 0.05 mm out-
wards from the wall was it easy to find the minima (curve 3). So the minimum distance from the wall for which
this technique can be applied, depends apparently on the magnitude of the turbu&ence level and the heat con-
ductivity of the wall. Accuracy and repeatability of this method Tie within + 1° but are better in the Tow
turbulence outer region of a boundary layer and reach + 0.5 degrees in the freestream (see also Delleur(37)).
A similar technique of measuring flow angles suggested by Bissonnette & Mellor(12) could not be applied here
since a symmetric angular-response characteristic is then necessary.

4.4 SKIN FRICTION

There is no need to emphasize the importance of knowing the wall shear stress in turbulent boundary
layers. Unfortunately, all the problems associated with skin friction measurements in two-dimensional flow
are made even more complicated by the additional measurements of the angle of the 1imiting streamline which
must be known in a three-dimensional boundary layer. Pierce & Krommenhoek(26) have investigated several tech-
niques of measuring the wall shear stress which have been used successfully in two dimensional boundary layers.
They showed, for example, that a Preston tube, a claw-type Preston tube and a hot wire, flush mounted into a
wall, indicate wall shear stress values within 10 % of those measured by a direct force reading device, with
the majority of readings within 5 % of the mechanical shear meter. A comparison between measurements made
using hot-film gauges, Preston tubes and sublayer fences in a relaxing three-dimensional boundary layer was
performed by Hebbar & Melnik(16, table 12). These authors found differences of 4+ 4 % in the skin friction
values measured. Judging this excellent agreement, one should keep in mind, however, that the three-dimensional
boundary layer in which these comparative measurements were made was far from separation and returning to a
two-dimensional flow.
Furthermore McCroskey & Durbin{29) performed flow angle and shear stress measurements using heated films and
hot-wires, especially the V-shaped hot-film probe, and Vagt & Fernholz(3) investigated the properties of a
surface fence in a three-dimensional flow.
An attempt was made to show the advantages and disadvantages of the different devices to measure skin friction
in Table (1). We disagree here somewhat with results of Hebbar & MeInik(16, table II) who find that the accu-
racy of measuring the wall flow angle hardly differs between a Preston tube, a surface fence and a hot wire
mounted flush in a wall.
One of the most important distinctions between the different methods of measuring skin friction is whether
they depend on the logarithmic law of the wall or not. Measuring techniques based on the log-law are usually
easy to handle but there is no a priori justification for using such a two-dimensional calibration in three-
dimensional flow. At present one must therefore rely on the few comparative measurements of skin friction
with a Preston tube and a direct force measuring device (floating element balance) in a three-dimensional
boundary layer performed by Pierce & Krommenhoek(26). These comparative measurements agree within a few per-
cent, Additional measurements as announced by Pierce et al.(30) are, however, very welcome.
Relying on these results we have used Preston tubes to measure skin friction in the three-dimensional boundary
layer. Further, though indirect, checks were made on the validity of this measuring technique by using two
Preston tubes of different outer diameters d (0.434 and 0.89 mm) and by plotting the measurements in the Taw
of the wall coordinates u' and y*. Measurements at the two stations in the three-dimensional region (x = 998
and 1031 mm) where the comparison was made agreed within + 4 %, the pressure difference Ap (Preston) being
in a range 0.06 < Ap < 0.55 mm of water column. Since the measuring time for the smaller Preston tube was
about an order of magnitude larger, the 0.89 mm tube was used for all measurements in the region downstream
of x = 1014 mm. The repeatibility of the measurements then lay within a bandwidth of + 5 %. falling to
+ 30 % close to separation due to the very small pressure differences and the high fluctuations of the
signal.

For the pressure measurements, which were in a range between 0.02 and 4 mm of water, a Statham transducer
(PM 97 TC) and an electronically controlled micromanometer (Froebel & Vagt(8)) were used. For accurate
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results special care had to be observed to keep the density of the manometer fluid constant.

The Preston tube was set to an average angle determined from flow-angle measurements close to the wall.

A more accurate adjustment has not been necessary since the sensitivity of circular Pitot probes to

changes in flow direction is very Tow within a range of + 150. This argument contradicts East & Hoxey(31)
and East(32) who suggested that a Preston tube should be aligned in the flow direction at a height y = 0,125
or 0.33 d, respectively.

The calibration curve of Patel(33) was used to determine the skin friction, thus assuming implicitly that
the law of the wall in two-dimensional flow can be transfered to three-dimensional flow. If the magnitudes
of the skin friction velocity and the mean velocity are inserted into the Togarithmic Taw

(5 ) = Yy lul/vy+c (4.4.1)

good agreement between measurements and eqn.(4.4.1) was obtained. This statement does not hold for profile
0802 which describes a velocity distribution close to separation where the uncertainties of the skin fric-
tion measurement were largest. Although these experiments were performed in a boundary layer with strong
three-dimensionality, one could argue that these effects had not enough time to change the turbulence
structure and with it the logarithmic law of the wall over a flow length of about four boundary layer
thicknesses. Further measurements may therefore be necessary.

Pate1(33) investigated the validity of the logarithmic law over a wide range of streamwise pressure gra-
dients in two-dimensional flow and recommended to use the constants K = 0.42 and C = 5.45 (see also (16)).
Coles gave a slightly different pair of constants, K = 0.40 and C = 5,10, which was found to agree well
with a large number of velocity distributions (see Fernholz & Finley(34)). We have plotted egn.(4.4.1)
with both pairs of constants for comparison.

Opinions apparently differ in what velocity should be used for the law of the wall in three-dimensional
boundary Tlayers, and a few examples are therefore given below.

East & Hoxey(31) suggested u = rg |, sec By where gy is the angle of the 1imiting streamline, East(32)

u = |U |cos @_where ¥ is the angle of the velocity vector in the external flow, and van den Berg &
Elsenaar(35) ur_as the component of the velocity vector in the direction of the wall shear stress.
East(32) also rémarked that when the cross flow is large the magnitude of the velocity vector should be
used.

Finally we discuss briefly measurements performed with surface fences built into the curved wall. Calibra-
tion curves and flow angle characteristics of these fences which had a height of about 0.10 mm were
described in (3). Measurements with the surface fences agreed satisfactorily with the Preston tube results
over most of the boundary layer, with discrepancies ranging from +12 % to about + 30 % confined to the
last part of the development close to separation. These discrepancies were partly due to the small height
of the fences resulting in pressure signals of a few hundredths of a millimeter of water against values
ten times larger obtained with the Preston tube.

It may be useful to draw the reader's attention to the rather long response times (more than 15 minutes)
which are necessary for flow measurements near the wall.
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DEVELOPMENTS IN THE COMPUTATION OF TURBULENT BOUNDARY LAYERS

Morris W. Rubesin
Ames Research Center, NASA, Moffett Field, California 94035, U.S.A.

SUMMARY

Computational techniques applicable to turbulent boundary Tlayers are classified into solutions of
Reynolds-averaged equations, in which all the effects of the turbulence are modelled, and solutions of three-
dimensional, time-dependent Navier-Stokes equations, in which the Targe eddies are calculated and only the
turbulence at scales smaller than the computational mesh spacings has to be modelled. Current computation
costs place engineering computations in the first of these categories; large eddy simulations are appropriate
currently for special studies of the dynamical processes of turbulence in idealized flow fields. It is shown
that the two methods are interrelated and that each can gain from advances in the other. The degree of suc-
cess of a pair of increasingly complex Reynolds stress models to broaden their range of applicability is
examined through comparisons with experimental data for a variety of flow conditions. An example of a large-
eddy simulation s presented, compared with experimental results, and used to evaluate the models for pres-
sure rate-of-strain correlations and dissipation in the Reynolds-averaged equations.

NOMENCLATURE
a transverse body radius ui' subgrid fluctuating velocity component in ith
direction
Cq modelling coefficient in pressure rate-of-
strain correlation, turbulence-turbulence u" fluctuating velocity in mass-weighted variables
interaction (Rotta term)
Vi surface mass-transfer normal velocity
Cf skin-friction coefficient
v' fluctuating velocity normal to surface
i3 turbulence production tensor, Eq. (37)
y distance normal to surface
e turbulence kinetic energy
a scaling factor in turbulence simulation
h static enthalpy
a model1ing coefficient in pressure rate of strain
h" fluctuating enthalpy in mass-weighted correlation turbulence mean-flow interaction
variables :
B modelling coefficient, Eq. (31}, or scaling
3 Tength scale factor in turbulence simulation
o mixing length g¥* modelling coefficient, Eq. (31)
Pi' turbulence production tensor, Eq. (37) g modelling coefficient in pressure rate of strain
J correlation — turbulence mean-flow interaction
PrL Prandtl number for molecular motions
Y mode1ling coefficient, Eq. (31)
p* mean specific static pressure
y* modelling coefficient, Eq. (31)
p static pressure X
% modelling coefficient in pressure rate of strain
p* specific static pressure, p/p correlation — turbulence mean-flow interaction
p* resolvable fluctuating specific static § boundary-layer thickness
pressure
sij Kronecker delta
p*' subgrid fluctuating specific static
pressure € eddy viscosity (turbulence kinematic viscosity)
Qj heat flux vector € turbulence kinetic energy dissipation rate
q turbulence speed £43 dissipation rates of Reynolds stress component
T
Re modelling coefficient, near-wall modifica- 19
tion, Eq. (31) 1 boundary-Tlayer edge turbulence intensity factor
ReT turbulence Reynolds number, Eq. (32) A Tow %ey?olds number modelling coefficient,
Eq. (31
Ry mode1ling coefficient, near wall modifica-
tion, Eq. (31) u fluid viscosity
Sij rate of strain tensor v fluid kinematic viscosity
Ui mean velocity component in ith direction Veff effective eddy viscosity in subgrid model
Uz velocity component in the 1ith direction, 0 fluid density
mass-weighted in compressible flows
I instantaneous fluid density

u. resolvable fluctuating velocity component
in ith direction o modelling coefficient, Eq. (31)



a* modelling coefficient, Eq. (31) () . apartial derivative with respect to the
> ith coordinate

2y Reynolds stress component

Qij vorticity tensor Superscripts:

w turbulence specific dissipation rate T total quantity, turbulent plus molecular

process
Subscripts: (") partial derivative with respect to time
e boundary-layer edge condition or experimen-
: tal value Other:

w surface quantity < > filtered average

1,2,3 Cartesian axes direction ") time averaged

INTRODUCTION

Advances in computer technology and numerical analysis during the past decade have made it possible to
compute the characteristics of turbulent flow fields with a degree of detail that was impossible in the past.
This computational power has been applied to problems both in engineering and in basic fluid mechanics.
Engineering methods have been confined largely to the solution of statistical equations of turbulence,
usually for steady-state conditions. The increased computational power has permitted the use of second-order
closure methods wherein partial differential equations are used to describe the scales, intensity, and even
the individual components of Reynolds stresses distributed throughout the flow field. It is becoming quite
standard in advanced engineering problems to use two-equation models representing the transport of turbulence
kinetic energy and a measure of the turbulence scale to establish the local eddy viscosity. The underlying
impetus to this work has been the premise that the increased complexity of a model tends to broaden its range
of applicability, thereby making it a predictive tool. The past simple models of statistical turbulence,
such as the mixing-length models, largely were used to explain flow-field behavior after the experimental
results were obtained; they could be used only to interpolate between or moderately extrapolate conditions
of a particular experiment. New situations required new experiments to guide modelling changes. With the
more detailed second-order closure models, however, the rather large number of experimental coefficients
employed requires drawing upon experiments of different kinds of flow fields for evaluating the modelling
coefficients of the different mechanisms. For example, the coefficient for the dissipation of turbulence
kinetic energy is determined in part from experiments dealing with the decay of isotropic turbulence. Coeffi-
cients for terms representing the exchange between individual components of Reynolds stress by the correla-
tion of fluctuations in pressure and the instantaneous rate of strain come largely from experiments in
homogeneous turbulence created by eijther uniform shearing or normal strains. Thus, when these models are
used in boundary-layer flows, many of their terms reflect the behavior of turbulence under other conditions,
thereby possibly broadening the model's range of applicability. On the other hand, this reliance on a group
of different kinds of experiments to establish the modelling coefficients often results in a somewhat less
accurate representation of a particular flow field than is provided by a fine-tuned, simple empirical model.
Engineers working continuously with certain kinds of flow fields tend to fine-tune the second-order models
as well, without (it is hoped) losing too much of the generality potential within the model.

Perhaps an even more important application of the powerful computation tools available today has been in
the rather new field of the numerical simulation of the large eddies of turbulence. In these calculations,
the three-dimensional and time-dependent character of the turbulent flow fields is retained. The principal
approximations invoived in these methods is in the manner of accounting for the scales of turbulence that are
too small to be resolved, even in the largest of the computers, for the time-dependent and spatially-dependent
boundary conditions, and for the initial field of the turbulence. Because the initial and boundary conditions
involve so many degrees of freedom, it cannot be expected that individual computational realizations will be
significant or even realistic. What can be expected or at least hoped for is that the results of the compu-
tations viewed statistically will accurately reflect the highly nonlinear mechanisms that govern the dynamics
of the flows.

The computations, to date, have shown much promise but they need considerable development; moreover, they
are much too costly to be considered as engineering tools. They are invaluable, however, as a technique for
the study of fluid mechanics in that they yield a mass of information about a flow field that experiments
involving discrete numbers of probes cannot possibly provide. The numerical analyst — when faced with making
the choices necessary for starting his problem, the ranges of scales he is to examine, and the techniques of
accounting for the subgrid scales — is forced to consider the details of turbulence that modelers of statisti-
cal turbulence have had to ignore. The apparent turbulence that numerical instabilities or bifurcations can
create forces the serious worker in turbulence simulation to continually compare his numerical results with
experimental data for similar flow fields. Because of the mass of detail contained within the calculations,
where for example any statistical moment can be generated, it is often found that even the classic experiments
lack data that unambiguously define the turbulence that was present.

The purpose of this paper is to demonstrate that both methods of turbulence computation have much in
common and that they are distinguished primarily by the fraction of the turbulence that is chosen to be
modelled. The statistical methods model all of the turbulence, ignoring most of the scale and all of the
phase character of the actual turbulence. The large eddy simulations compute the actual physical character
of the larger scales of the turbulence and model only those scales of turbulence smaller than the computa-
tional mesh dimensions. The fraction of turbulence the subgrid model represents depends largely on the local
turbulence Reynolds number and on the number of mesh points that the computer can handle.

In the present discussion, the two methods are interrelated; a review is given of the success or failure
of a pair of second-order closure methods to model the statistical properties of a variety of turbulent flow
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fields, without adjustment of modelling constants; and some examples of large eddy simulations for simply
strained homogeneous turbulent flow fields are presented and compared with data. Examples of statistical
model information that can be gained from these computations is shown. Finally, a plea is made for coordi-
nated experiments and large eddy simulations, which together should prove to be most valuable in explaining
the physics of turbulence under a variety of flow conditions.

TURBULENT FLOW EQUATIONS

In the analysis of turbulent motions, it is generally believed that the basic physics of the fluid flow
is contained within the Navier Stokes equations. Since these same equations apply at a point in space and
time for both Taminar and turbulent motions, the distinction between these types of flows arises from the
initial and boundary conditions the flows experience and from their response to small disturbances that are
always present in real flow fields. This response is largely dependent on the Reynolds number of the flow.
The properties of turbulence, then, are the consequence of the fluid instabilities that occur at high Reynolds
number and the subsequent nonlinear, apparently chaotic, mixing processes that take place. It is these non-
Tinear processes that produce a broad range of length scales of motion within the turbulent flow and this, in
turn, affects finite difference computations greatly.

The length scales range from those comparable to the characteristic dimensions of the apparatus down to
those where the turbulent motions have Targely been dissipated by viscosity into heat. Even the largest
available computers fall far short of being able to resolve such a broad range of scales for flow fields of
technological interest. Although the prospects of increasing the resolution of the turbulence scale with
future computers is good (Ref. 1), it is not expected that it will be possible to compute the smallest dissi-
pation scales, at Reynolds numbers of interest, in the reasonably near future.

A variety of turbulence models has been developed to account for these small irresolvable subgrid scales.
These models have a great deal in common with the models for Reynolds stresses in statistical turbulence
theory. This is demonstrated in this section through the equations for an incompressible fluid that describe
the small scales of turbulence and their effect on the larger scales and the mean flow.

The instantaneous motion of an incompressible, viscous fluid is described by the continuity and Navier-
Stokes equations

, L= 1
U5 =0 M
and
s + (uiuj + Gijp* = vui,j),j =0 (2)
where
p* = p/o (3)

The instantaneous, local velocity can be expressed as the sum of three components: the time mean velocity;
the sum of the fluctuating turbulence components whose length scales can be resolved by the finite-difference
computational scheme; and the sum of those fluctuations too small to be resolved, namely

u; = Uy 4 G. +u! (4)

The other dependent variable, the pressure, can also be resolved in a similar manner
p* = P* 4+ p* 4+ p*! (5)

To convert Egs. (1) and (2) to contain only resolvable dependent variables, it is necessary to average them
or filter them in some manner. For the purposes at hand, it is not necessary to define the filtering process
precisely. 1t can represent a weighted average over a line in space, a surface, a volume, or even a charac-
teristic time comparable to the time scales of the small length scales of turbulence. The filtering process,
represented by the symbol < >, will be defined in such a way as to accomplish the following:

) -

<u1> 0

<u_.|> = u'l

<U1> = U_.I

: (6)

<u%Uj> =0

5y =
<uzus> 0
Ui, TN

Note that the fourth and fifth definitions in (6) imply that the two scales of turbulence are uncorrelated
over the filter domain and that the domain is small compared to the scales of the mean motion. Leonard
(Ref. 2) has demonstrated the limitations of these assumptions, but the simplicity resulting from them is
attractive for the present development.

With Eq. (4), Eq. (1) becomes
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When filtered according to Eq. (6), Eq. (7) reduces to

T
Uy, ¥ U5,5=0 (8)

When Eq. (8) is time-averaged in the Reynolds sense, that is,

T
s .
= }12 T f(t)dt (9)
there results
Uj,j =0 (10)

0f course, subtracting Eq. (10} from Eq. (8), and Eq. (8) from Eq. (7) yields

Uy 5 = 0 (11)

and

ug g = 0 (12)

Similar operations of filtering and time-averaging on the Nav1er Stokes equations (Eq. (2)) yield the fol-
lowing forms of the momentum equation. The mean-momentum equations are

U.U, . = =6,.P%, + U - (u U. + <uy u'>)

3UiL3 13,3 7 VL3, j j (13)

2J

The momentum equations for the resolvable turbulence scales needed to evaluate the Gf in Eq. (13) are

{i (0, ~ G0 . - (<uful> - <uiu >) (14)

+ U v, . . - G.U. . - .- L0,
Ui 5= 843005 + v .5 Tl ity " 9905 it

Y

The equations for the instantaneous values of the filtered moments of the subgrid scales, themselves at
resolvable scales, can be expressed as

Vi - = ey o . o
<ufup> + (Uj + uj)<u%u&>’j <uku3>(Ui + ui)’ <u 5 (Uk + uk),j

_ 1,00 - 1ok ly Tkl
Dt S0 O B L SO

I ]
+ v<u U> 5.5 " 2v<uk,jui,j> (15)
An equation for the subgrid turbulence kinetic energy, defined as
2y = 1,10
Q%> = <uiui> (16)
follows from the trace of Eq. (15):
<q?> + (UJ + Gj)<q2>=j = —2<u_‘iu\]j>(Ui + []_i)i - <uj L(2p*' + g2)> r
+ 2s ., - !
VA% g5 T 2y g4 g (17)

Equation (13) shows that the influence on the mean motion of the two scales of turbulence is through the
sum of two Reynolds stresses, each associated with the different scales. In statistical turbulence theory,
the different scales of turbulence are ignored by summing these Reynolds stresses into a single stress which
is then modelled. Thus, all the effects of the turbulence on the mean motion are modelled. In large eddy
simulations, however, the {i; are calculated as functions of time and in three dimensions and the correspond-
ing large eddy Reynolds stresses are then computed through time averaging. (Actually, most large eddy simu-
lations compute the sum of U; and Ui, but in principle the mean flow is affected as stated.) Only the small
scales are modelled and their influence is felt on the mean flow through the Reynolds stresses they contribute
and in their effect on the larger scales of the turbulence. As the larger fraction of the turbulence spectrum
is computed, less reliance has to be placed on contributions of the turbulence model. A mechanism exists,
then, for converging on the correct statistical description of turbulence through a systematic increase in the
fraction of the resolved turbulence scales. It is not clear, to date, how the quality of the subgrid turbu-
lence model affects this convergence rate and actually how many scales of the large eddies require computation
to provide a good description of the turbulence transport mechanism in a variety of flow fields. Another
apparent advantage of the method of large eddy simulations is based on the optimism regarding the generation
of a universal subgrid model. This optimism reflects the experimental evidence that the small scales of tur-
bulence in a variety of flow fields exhibit similar spectral characteristics when scaled in the Kolmogorov
sense.

Equation (14) illustrates the influence of the mean flow and the subgrid turbulence scales on the resolv-
able scales of the turbulence. It shows that the growth of the resolvable turbulence along a mean streamline
is acted on by the turbulence pressure and viscous diffusion in the same manner that the corresponding terms
act in the mean flow. The additional last three terms represent the interactions between the resolvable tur-
bulence and the mean flow, the components of the resolvable turbulence, and the subgrid scales of the turbu-
lence. It is the latter terms that must be modelled to close the calculation of the resolvable scales.



Incidentally, these calculations must be performed in three dimensions and in time for each component of
the resolvable turbulence; it is a rather costly process on today's computers.

Equations (15) and (17) provide insight into the modelling of the subgrid turbulence scales needed to
"close" Egqs. (13) and (14). When either Eq. (15) or Eq. (17) for the subgrid scale moments is compared with
the equations representing the Reynolds stresses or kinetic energy in a statistical turbulence formulation,
it is noted that they have essentially the same form except that the mean flow in the statistical equations
has been replaced by the instantaneous large-scale motions, and the subgrid-scale moments have a time
dependence. This strong similarity between the subgrid-moment equations and the Reynolds stress equations
suggests that much of the experience gained with statistical model1ing procedures eventually will be able
to be applied to subgrid modelling. At present, the Timitations of computer storage encourdge use of the
simplest of subgrid models, analogous to the first-order closure methods, such as constant eddy diffusivities
or mixing-length models in statistical Reynolds stress methods. Equations (15) and (16), however, suggest
that second-order closure methods applied in statistical methods over the past decade will have a role in
subgrid closure as well. Computer Timitations and costs, also, will restrict Targe-eddy simulation in the
near future to simple flow fields. The results, however, will provide considerable insight into the physics
of turbulence and will contribute to modelling of the statistical equations. Some preliminary studies of the
latter are given later in this paper.

STATISTICAL TURBULENCE MODELLING

Since the 1968 Stanford conference on the computation of turbulent boundary layers (Ref. 3), statistical
turbulence modelling for engineering applications has gone in two directions. The first has been the fine
tuning of first-order closure methods, involving algebraic mixing-length models. This was accomplished by
fitting the models to well-defined experiments with attached boundary layers experiencing pressure gradients
and/or surface mass transfer. References 4 and 5 are examples of this approach. Although these methods yield
excellent representations of the data within their range of application, their abilities to extrapolate beyond
the ranges of the experiments that form their basjs is questionable, Any introduction of additional length
scales into the boundary-layer characteristics, such as a transverse radius of .curvatiure comparable to the
boundary-Tayer thickness or an injection slot dimension, requires considerable remodelling of the length
scales. In the absence of experimental guidance, this remodelling has to be based on ad hoc assumptions.
Further, in flow fields where changes in the mean flow are rapid, the assumption inherent in most first-order
closure methods, that the turbulence remains in equilibrium with the mean flow, may not be true. The recogni-
tion of these Timitations of first-order closure methods has led to considerable work in the second direction,
namely second-order closure methods, where one or more of the characteristics of turbulence is represented by
a partia] differential transport equation. These methods are based Targely on the concepts presented in the
pioneering papers by Kolmogorov (Ref. 6), Chou (Ref. 7), and Rotta (Refs., 8,9). As explained in the Intro-
duction, the impetus behind the development of second-order closure methods was the belief that they have the
potential of a broad range of applicability and may, with further development, become predictive tools in
engineering computations.

An ideal predictive turbulence model would be one that could remain unaltered in form and in its empiri-
cal coefficients for all flow fields. It is questionable; however, that such an ideal universal model can be
achieved within the framework of statistical models, even when allowance is made for acceptable engineering
error. Such models inherently ignore spectral and phase relationships between eddies of different sizes.

The Targer eddies in a turbulent flow are known to reflect the particular nature of the flow and this alone
is sufficient to raise doubts regarding the potential universality of statistical models. Of course, zonal
turbulence models that differ from flow to flow but can be related to some particular mean flow feature are
also of value to the design engineer; they may be the best that can be expected of statistical models. Such
zonal models, however, introduce mathematical difficulties in the identification of the bounds of different
zones of app]icabi]ity of the individual models, and the means of coupling the interaction between these
zones. It is much easier to deal with the same model throughout the flow. In view of this, it would be
illuminating to learn how well or how poorly a fixed model could work on a variety of boundary-layer flows.
To demonstrate this, calculations based on a pajr of fixed second-order closure models will be compared here
with data from a variety of experiments.

The particular models chosen for this comparison have been developed for the most part by Wilcox and
Traci (Ref. 10) with some collaboration by the present author (Ref. 11), and were an outgrowth of the early
work of Saffman (Ref. 12). One model uses an eddy viscosity, which is dependent on the kinetic energy of
turbulence and the dissipation rate per unit of kinetic energy (a specific dissipation rate or Saffman's
"pseudovorticity"). The other model closes the Reynolds stress equations directly, with the scale of turbu-
lence again being defined with the specific dissipation rate. In choosing these models for comparison here,
the author does not wish to imply that he believes them to be the best of the second-order closure methods
available today to represent boundary-layer flows. In some respects, the models developed by Launder and
his colleagues (Refs. 13,14) are more general and represent the mean flow very close to a surface in a more”
realistic manner (Refs. 14,15) On the other hand, computations of some compressible flow fields with two-
equation models favor the Wilcox-Rubesin model (Ref. 11?. It is not clear at present which, if any, existing
model will be most uniformly valid for all applications. The primary reason for presenting models in which
the author was involved was his access to computer codes containing them; as a result, the codes could be
used to generate the examples that follow. Also, since both of these models and those identified with
Launder utilize essentially the same data to establish their modelling coefficients, it should not make much
difference in the examination of the un1versa11ty of second-order closure modelling of boundary-layer flows
which family of models is employed.

Mean Flow Equations and Boundary Conditions

The mean flow equations used in computing the examples that will be treated Tater are written for a
compressible fluid in mass-weighted-average dependent variables (Ref. 16). The conservation equations for
mass, momentum, and energy are as follows:

f) + (puj),j =0 (18)
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(50 * (puguy)ag = =Py + (ot 5)sy (19)
. . T T
+ . = D> ceU - e I
(ph) (pth),J P+ UsPsy * pTygly g (pQJ ) j (20)

Here, the symbols r¥- and Q-T denote the specific mass-weighted-average total shear stress and heat flux
that include the contributiohs of both the molecular and turbulent transport. These quantities are defined as

Te 1

T4y = 2v Sij =3 UGSyt Ty (21)
and

Q.T=_Lh +Q, (22)

J Pro 25 7
the mean rate of strain tensor in Eg. (21) is

21
Sig =7 (g5 * uy,¢) (23)

Finally, 2 and Qj are the mass-weighted-averaged Reynolds stress tensor and heat flux vector defined by

<5U."u-">
I ke e
iJ 0
. (24)
QJ _ <u;"h">
p

where p is the instantaneous density, <6> denotes the time average of o6, and 6" 1is the fluctuating part
of o 1in mass-weighted-average formulation. The surface boundary conditions for Eqs. (18) to (20) are:

, at x, =0
U1=0
Up = 0 or v,(xp) (25)
h = hy(x1) or (sh/axy) = (dh/3x,),,

A1l flow variables approach free-stream flow conditions in general flow-field computations. For the special
case of two-dimensional boundary layers, boundary conditions at the boundary-layer edge are

at X9 = 6(x1)

up = Ugl(xq)
(26)
h = he(x;)
The two models used to close these equations are given in the following sections.
Two-Equation Eddy-Diffusivity Model
The two-equation model considered here utilizes an eddy diffusivity defined as
e = y*e/w (27)

where the turbulence kinetic energy e and specific dissipation rate © are given by the turbulence model-
1ing equations:

Y . s = ) ) s - * * : ry
(ve) + (puJe),J pTy4Uy, 5 = Brove ¥ [(u+o pE)ekJ],J (28)
and
. 2
(PU’Z) + (pujmz),j ™Y w? PT.iju.i +3 - [B + 20(9'3k9"k)]94-03 + [(IJ + ape)(mz),j],j (29)

To account for compressibility, all the dependent variables are expressed as mass-weighted averages (Ref. 16).
The length scale is represented by

el/2
®

L= (30)



The modelling closure coefficients employed are as follows

g = 3/20, B* = 9/100, o = o* = 1/2
v*=[1~(1- xz)exp(—ReT/Re)]
(31)
vr¥ = v [1 - (1 - 22)exp(-Rep/R,)]
v, = 10/9, A= 1/11, Rg = 1, R = 2
The Reynolds number of turbulence is given by
1/22
Rep = £ (32)

The boundary conditions appropriate to these modelling equations, when they are applied to boundary layers,
have been guided by asymptotic analysis and reference to other models. The surface boundary conditions for
Egs. (19) and (20) are as follows:

at x, =0
e=20
33a
20 Y ( )
o >
BXZZ
at x, = S(Xl)
e = IUez(Xl)
(33b)

2

0.09 g*1/4s(x,)

As the quantity 2/3*1/J+ behaves much Tike the classical mixing length, the proportionality coefficient of
0.09 in Eq. (19) is readily seen to be consistent with the Escudier eddy-viscosity model (Ref. 17).

Since it was desired to model Reynolds stresses that do not necessarily align with the mean rates of
strain, the constitutive relationship relating these quantities was written as

2 e (

1 8
=S e, + R L)+ 2 +
Tij T 3 %4 25(§1J 3 uk,k613) 9 (B*w2 + 25 >

) (34)

SiQOj ijmi

mnSnm)
where the third term on the right was guided by the work of Saffman (Ref. 18). The vorticity tensor used
here is defined as

1
%5 =7 (Ug,5 7 vj,9) (35)

and the mean rate of strain is given by Eq. (23).

Reynolds Stress Equation'Modei

The model1ing in the Reynolds stress equations (RSE) presented here utilizes (1) a particular version
of the pressure rate-of-strain correlation presented by Launder et al. in Ref. 14, (2) gradient diffusion
for third-order correlations involving velocity and pressure, and (3) isotropic dissipation. Following
Launder et al., the pressure rate-of-strain correlation is represented as

2 2 2 A 2 "
BT = Gosto(egg + £ 6yy0) - afoag - 2 P0gy) - 80y - 2 70y)- oS
p(u + uJ’1) Cy8%*w i +3 STJe a P]J 3 P51J B D1J 3 Pé,IJ yeS1J (36)

1,

where the first term on the right, called the Rotta term, is proportional to the anisotropy of the turbulence.
The terms preceded by the modelling coefficients a, B, and vy are contributed by the interaction of turbu-
lence and mean flow expressed in terms of

Pis = TikYy,k T iKY,k
Dii = TikUk,i * TikYk,i (37)

P

1 -
2 Pij 7 D34 = Tmnsnm

In choosing the values of a, 8, v, Wilcox and the author opted to rely on experimental data rather than the

symmetry arguments recommended by Rotta (Ref. 8) and carried out by Launder et al. (Ref. 14). The first
experimental observation employed was that

T33 E‘% (rq, + Tzz) (38)



11-8

when a homogeneous turbulent flow is equally stretched in the x; direction and compressed in the x»
direction, which by continuity in an Incompressible fluid leaves the x, direction unstrained (Ref. 19).
The second observation was that a field of homogeneous turbulence in rigid body rotation decays without
developing anisotropy (Ref. 20). The latter data forces & = 8. The remaining constants are evaluated,
after representative values of t,,/1,, and ty,/e are established from data in a homogeneous shear flow or
in the law-of-the-wall region of a flat-plate boundary layer. The model used here was based on the approxi-
mate relationships w©ps/t3y # 1/2 and w;,/e = 0.3, both of which are consistent with the form of the two-
equation model in shear flow. Further remarks regarding the modelling constants found in this way will be
made in the section on large eddy simulations.

With the modelling described, the Reynolds stress equations expressed in terms of the components of
Reynolds stress are

- 2 o _*( 2
ijmui,m + 3 B pweéij Cls pw Tij + 3 esij)

2 4 21 *
g p(ijSmi * Tindmg " 3 Tmnsnmaij) *3 pe(sij 3 uk,k‘sij) * L+ o¥oe)ryy 1 1oy

(DT.' ') + (pukT'ij)’k =

-pTs U,
13 PTim 3,m

(39)

The components of the Reynolds heat flux are modelled with

y N u
(pQ'i) + (pujQ'i)’j = DT.ijhaJ- - ij”i,j - B**DwQ.i + [(PrL + U**pe)Qi,j]’j (40)

The specific dissipation rate used to provide the scale of the turbulence is again given by Eq. (20).
In these equations

e = efw
1 (41)
€7 N
and the modelling coefficients are
9
g = é% > B* = T%ﬁ 5 B** = S5F g = 6* = %., 6** =2

[}
it
|

25
_R -1

= Clw[l -1 - )\Z)exp( RZT>]
'ReTﬂ (42)

|<

(o)
ot

0

%% = P - (1 - A2)exp

TN
|
€

€1, = [% - %exp(-5x)]
= 13 = -J— = =
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Again, the Reynolds number of turbulence Rer 1s given by Egs. (30) and (32). At the solid surface,
Eqs. (24) again apply and, in addition

at x, =0
QJ =0
(43)
Tij =0
At the boundary-layer edge, in addition to Eqs. (24), it is required that
at X, =8
QJ- =0
o (44)
43 = 3‘1Ue (Xl)aij

Examples of Turbulence Model Application

As an initial example of the use of the turbulence models presented herg, consideration is given to the
distortion of a field of fully developed, homogeneous turbulence by application of plane or normal strains.
This case acts as a test of the models when near-surface effects are absent. The particular case treated
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corresponds to the flow in the experiment by Tucker and Reynolds (Ref. 19). Figure 1 shows a schematic
diagram of the test channel. The fluid enters at the left, is conditioned through screens, and passes

toward the right in parallel flow until it reaches the station where the constant rate of strain is applied.
The constant strain is achieved by exponentially expanding the channel in the x direction and contracting

it in the y direction so as to maintain a constant cross-sectional area. The straining causes the initially
nearly isotropic turbulence to become anisotropic, a measure of which is the straining parameter plotted as
the ordinate in the Tower portion of the figure. After the fluid is strained, it is returned to a parallel
flow. Here the fluid tends to return to isotropy.

Use of the RSE model in computing this flow is noted to yield reasonably good agreement with the data.
At the initiation of straining, the computed growth of anisotropy is somewhat faster than the data, but this
trend reverses toward the end of the straining region and downstream. These trends were influenced by the
assumed form of C,_ in Eq. {42) which was adjusted to fit an aggregate of homogeneous flow experiments, not
just that of Tucker and Reynolds. Use of the two-equation model in the computations suffers in two respects.
First, the model shows the difficulties of all eddy viscosity models when a sudden application or removal of
mean strain occurs. Although the elements making up the eddy viscosity (e and w) vary continuously where
the discontinuities in strain occur, the corresponding Reynolds stresses are still discontinuous. Second,
the rate of generation of anisotropy, by the two-equation model away from the stations where the discontinui-
ties occurred, was too slow. Thus, although the RSE model has been shown to yield rather good agreement with
the data, this example illustrates that two-equation models are limited to flow conditions with more gradual
application of mean strain.

An example of the application of the turbulence models to a boundary-layer flow of an incompressible
fluid is demonstrated in Figs. 2 through 4. The data are from the experiment conducted by Bradshaw in which
a turbulent boundary layer was exposed to a sudden application of an adverse pressure gradient (Ref. 21). The
data points designated with open symbols result from a reinterpretation of the basic data by an independent
analysis (Ref. 22) and provide an indication of the uncertainty inherent in the data. Figure 2 shows the
distribution of skin friction and boundary-layer shape factor along the test zone. The computations were
started by matching the momentum-thickness Reynolds number from a flat-plate calculation to the Reynolds num-
ber measured at the upstream station. Beyond this station, the experimental pressure distributions were
imposed on the boundary-layer calculations. It is observed that the two-equation model and the Reynolds-
stress model both yield skin friction and shape factor results that are nearly the same, and that both agree
well with the data. It should be noted that no adjustments were made to the modelling to account for the
pressure gradient.

The measured and computed mean-velocity profiles at the farthest downstream station are shown in Fig. 3,
which is expressed in wall-law coordinates. The computations based on both models yield results in good
agreement with the data. In the "law-of-the-wall" region, the computed results agree with the standard
logarithmic formula. In that region, also, there is a little better agreement with Coles' reinterpretation
of the data (Ref. 22). Neither of these observations is surprising, as the use of the Togarithmic law with
the constants shown played a major role in the data reinterpretation and in establishing some of the modelling
coefficients used in both models. Perhaps more significant is that the computed results based on both models
show the enhanced contribution of the "wake" region that is characteristic of boundary-layer flows in adverse
pressure gradients.

Figure 4 compares the Reynolds stress, turbulence energy, and mean-velocity profiles, computed from the
two models, with Bradshaw's data. In these figures, the distance normal to the surface has been normalized
by the boundary-layer thickness. Generally, the Reynolds stress components and the turbulent kinetic energy
given by the two models differ less from each other than from the data. The normal components of Reynolds
stress —<u'2>, <w'2> and, to a lesser degree, the kinetic energy —are evaluated rather poorly in the inner
half of the boundary layer. On the other hand, the normal Reynolds stress <v'2> and the shear stress
<-u'v'> fit the data much better. This reflects the adjustment of some of the modelling coefficients to
provide good mean-velocity profiles in a flat-plate boundary layer, where a good evaluation of the Reynolds
shear stress is paramount. In the coordinates of this figure, the two-equation model shows a little advan-
tage over the RSE model; however, both models yield results that reflect the "flattening" of the velocity
profile introduced by the adverse pressure gradient.

The results that have been shown here are representative of comparisons of many other sets of data with
computed results based on the two models. For attached, subsonic boundary layers on flat plates, with or
without pressure gradients, there seems to be no advantage to the Reynolds stress model. Under these flow
conditions, the departure of the turbulence from being in equilibrium with the mean flow is apparently too
small to cause the two-equation model difficulties that were indicated earlier with suddenly distorted
homogeneous flows.

The growth of a turbulent boundary layer on a small-radius circular cylinder with its axis parallel to
the free stream is an example of a flow where the mixing-length formulation required considerable change, from
that on a flat plate, to make computations conform with the experimental results. Generally, the data showed
that as the ratio of the boundary-layer thickness to the transverse radius increased, the "wake" region of the
boundary layer diminished (as occurs on a flat plate in a favorable pressure gradient). Also the skin-friction
coefficient at a given Reynolds number based on boundary-layer thickness increased with diminishing body
radius. When Rao (Ref. 23) examined this flow field, he concluded that conformance with his data could be
achieved if he employed a wall-region law equivalent to setting the mixing length in the inner region of the
boundary layer to

- en(1 + y/a)/T + y/a
1y = by [ 2048 ] (49)

In studying the same problem, Richmond (Ref. 24) deduced a formulation equivalent to

L - ky[ (1_+ y/2a) ] (46)

" (1 + y/a)3/?
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For values of y~ a, Eq. (45) remains within a few percent of &y = ky, whereas Eq. (46) shows a reduc-
tion of about 50%. These differences result in adjusting the position of data in opposite directions, in
terms of y » relative to the universal "law of the wall" and demonstrates vividly how arbitrary the exten-
sions of mixing-length closure can be.

The RSE second-order closure model given here was applied without change to this type of flow to see if
the experimental data could be represented. Figure 5 compares the computed results and measured data in terms
of the effect on skin friction of the ratio of 6&/a. Four sets of data are utilized (Refs. 24-27) to cover
a sizable &/a range. The computational results are shown as a band because the ordinate employed does not
collapse all of the Reynolds number dependence. The computations with the unchanged RSE model represent the
trends of the data well up to a value of &/a = 10, where the Cf 1is 30% higher than that on a flat plate.
Beyond this, a significant departure occurs from the data of Willmarth et al. (Ref. 27) where the measured
Cr s increased to more than twice that of a flat plate. Apparently, the RSE model in its present form fails
to fully account for changes in the wake character of the boundary layer over a body with an extremely small
transverse radius.

The next example to be treated deals with the topic of streamwise curvature, the importance of which was
first recognized by Bradshaw (Ref. 28). The Reynolds-stress equations were app11ed to this problem directly
through the conversion of the coordinates from Cartesian to curvalinear, with one axis tangent to the surface,
s, and the other normal to the surface, n. The two-equation model, however, required reinterpretation of the
meaning of the symbol e, treated as the kinetic energy earlier. Details of these transformations are given
in Ref. 11.

For flow over a streamwise curved surface, the s, or curvilinear coordinate system, introduces terms in
the Reynolds stress equations analogous to centrifugal and Coriolis forces in the momentum equations. When
the normal stresses are added together, however, most of these additional terms cancel, resulting in an energy
equation that is essentially the same as on a flat surface; the only change is in the product1on term where the
mean-velocity gradient osu/sy is replaced by (gu/ar) - (u/R) The specific energy-dissipation-rate equation
is also changed in the same way. Thus, a direct application of the two-equation model as given earlier would
not show streamline curvature effects of the magnitude indicated by a Reynolds stress model or by the experi-
mental data (e.g., Ref. 29). This deficiency was corrected by (1) observing that the Reynolds shear stress
and v'2 equations in the RSE model in s, n coordinates added similar terms because of the streamwise
curvature and (2) identifying e with a "mixing energy" rather than a "kinetic energy." The symbol e then
is redefined as

e=+VTaa T (47)

which follows from the basic model in a homogeneous shear flow where the turbu]ence production and dissipation
are in balance. With Eq. (47) and the Reynolds stress equation for Vv'Z and u'v' as guides, the e equation
for use with the two-equation model only is written in an ad hoc manner as

ue,  + ve, + %‘%‘T = T(P,n - %) - B¥ew + [v + G*E)E,n],n (48)
with
. _u
T = e(u,n R) (49)

and, where ¢ follows from Eq. (27); all the modelling coefficients and relationships employed in the two-
equation model introduced earlier are retained, The third term on the left side of Eq. (48) represents the
principal extra rate of turbulence production introduced by the Tongitudinal surface curvature.

Calculations based on these model modifications for streamline surface curvature are compared in Fig. 6
with data obtained by So and Mellor (Ref. 29) for a boundary layer on a convex wall with an adverse pressure
gradient. The data represent the surface skin-friction coefficient and shape factor along the surface. The
computations include the RSE and two-equation models, both with and without the corrections for Tongitudinal
surface curvature. The computed results were matched to the first station by assuming the flow upstream of
the station to be on a flat plate of a length to yield the correct skin friction there. The calculations
with the RSE or two-equation model unmodified for streanwise curvature show 1ittle of the drop in skin-
friction coefficient experienced in the experiment. The modified models, on the other hand, give an excellent
representation of the skin-friction behavior. This is rather remarkable for the two-equation model, when
its ad hoc formulation is considered. Finally, both modified models represent the form factor data also
quite well.

It may seem to be illogical in the test of the universality of a turbulence model to make the modifica-
tions indicated for introducing the effects of streamwise curvature. For the RSE model, the modifications
were purely geometric and were introduced by selecting the appropriate coordinates for the problem considered.
No physical modelling changes were made. The original two-equation model, on the other hand, was insensitive
to changes 1in the coordinate system and an extra production term had to be added to the e equation. One
can view the need for the change as an indication of the inherent weakness of the original two-equation model,
or the view of the final e equation as the basic boundary-layer model that then is simplified geometrically
for planar surfaces.

The remainder of the two-dimensional boundary layers considered here involve compressible flows. As
noted earlier, the extension to compressible flows is achieved by adopting dependent variables that are Favre
mass-weighted averages. In these variables, the conservation equations take forms that avoid terms that are
explicitly dependent on the turbulent density fluctuations. Term-by-term, the equations are comparable to
their incompressible counterparts, with the compressibility entering only through the mean density variations.
Although Favre averaged-model equations are, in the main, parallel term-by-term to their incompressible
counterparts, they have additional terms explicitly dependent on density fluctuations that require additional
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modelling (Refs. 30,31). In practice, however, it was found that these additional terms could be ignored,
even under conditions involving large pressure gradients where the terms are their largest (Ref. 32).
Reflecting this, the models presented here neglect these additional terms.

These models were applied to the calculation of skin firiction on a cooled flat plate in airflow at a
Mach number of 5. The results of these calculations based on the two models are compared with values given
by the van Driest II formulas in Fig. 7. These formulas have been shown (Ref. 33) to represent the bulk of
existing data under these conditions to about +10%. The agreement between all the methods is excellent,
but this is not surprising in view of the similarity of the density scaling in Favre averaging (Ref. 11) and
that which is inherent in the van Driest formulation.

Compressible turbulent boundary Tayers experiencing severe pressure gradients are cases where the models
are tested more severely. The first example of such a flow is the experiment conducted by Lewis et al.
(Ref. 34) at a Mach number of four. In that experiment, an axisymmetric turbulent boundary Tayer on the
adiabatic interior wall of a circular cylinder was subjected to an adverse pressure gradient followed by a
favorable pressure gradient. The pressure gradients were achieved by means of a shaped center-body; a pres-
sure rise of 9 times the upstream pressure was attained before pressure relaxation occurred. Figure 8 shows
the distribution of the surface skin-friction coefficient within the test zone. The coefficient shown is
defined in terms of the upstream boundary-layer edge conditions, not the local, and is therefore proportional
to the surface shear. The Reynolds number at the initial station was about 7 x 106. Along with the computed
results based on the models presented here, computations based on the Marvin Shaeffer code (Ref. 35), which
has been extended to contain a classic mixing-length model essentially identical to that of Cebeci (Ref. 4),
are given for comparison. The mixing-length model fails to capture the full rise of the skin friction
caused by the adverse pressure gradient. On the other hand, it follows the data in the region of favorable
pressure gradient quite well. The second-order closure models demonstrate a much better prediction of the
rise in skin friction in the adverse pressure gradient region; however, in the following favorable pressure
gradient region they show somewhat too large a drop in the skin friction. The two second-order models yield
essentially equivalent results.

Figure 9 shows data from a similar experiment conducted by Horstman et al. (Ref. 36) at an initial Mach
number of 2.3 and over a large range of Reynolds numbers. In addition to computations based on the two models
considered here, computed results from two versions of a mixing-length model and another two-equation model
are also shown here. At this Mach number, M_ = 2.3, the onset of an adverse pressure gradient first reduces
the skin friction before a rise similar to that which occurred in Fig. 8 also occurs. Generally, the com-
puted values of skin friction from all the models conform to the trends in the data caused by the change in
Reynolds_number and the effective pressure gradient. One exception is the behavior of the mixing-length
model unmodified for pressure gradient which indicates separation at the Towest Reynolds number. At the higher
Reynolds numbers, the difference between the modified and unmodified mixing-Tength model become very small.
From this figure, conclusions regarding the relative merits of the different models would be indecisive. In
Fig. 10, when the adverse pressure gradient is applied over a greater distance, the models behave in a somewhat
different manner. At the lowest Reynolds number, the unmodified mixing-Tength model no Tonger indicates
separation. Also, at the lower Reynolds numbers, the second-order closure models are in much better agreement
with the data. Omission of the explicit density fluctuation terms resulting in the model equations after
Favre averaging is justified by these examples. Incidentally, the computed results labeled Aeronautical
Research Associates of Princeton (ARAP) are based on a Reynolds stress model utilizing primitive dependent
variables including the whole gamut of fluctuating density terms (Ref. 37).

The remaining examples of two-dimensional boundary Tayer and near-wake flows were computed with the
compressible Navier-Stokes equations to account for strong interactions between the shear layers and the
inviscid flow. Because these codes are costly to operate they have been Timited, at Teast to date, to con-
tain models of turbulence of the two-equation kind or simpler. Therefore, the RSE model will not appear in
these examples.

Figure 11 shows calculations of the surface pressure and skin-friction distributions compared with data
in the region of the interaction of a normal shock wave with a fully established turbulent boundary layer
(Ref. 38). The schematic diagram shows that the flow field was developed on the surface of a tube within a
slightly supersonic main flow. A normal shock wave was generated and positioned along the test section with
a variable blockage device at the downstream end of the test section. The figure at the Teft shows that the
computational results based on the two-equation model generally agree well with the measured surface pressure
distributions at the five Mach numbers tested. The departures that exist from the data are small and incon-
sistent enough to hide any systematic deficiencies in the computational model. The computed skin-friction
coefficients again conform to the main features of the data. The calculations show a downstream movement of
the minimum in skin-friction coefficient with increasing Mach number. If the extreme Mach number cases are
emphasized, a similar movement is seen in the data, although of larger extent. The inaccuracies inherent in
skin-friction measurements can possibly exaggerate the movement of the minimum skin-friction coefficient and
could be the source of these differences.

An example of a strong interaction between a boundary layer and a shock wave at higher Mach number is the
experiment of Settles et al. {Ref. 39) with a turbulent boundary layer traversing a compression corner. The
computations used for comparison with the data are from Ref. 40. Figure 12 shows computations and measure-
ments of surface pressure and surface skin friction for two deflection angles of the compression corner,

o = 20° and 24°. Besides the two-equation model under consideration, three other models have been used in
these computations. Models not shown in any of the earlier examples are a kinetic energy model with an
algebraic Tength scale (Ref. 31) and the Jones-Launder two-equation model (Ref. 13). A general observation

is that both two-equation models yield essentially the same results, except for the level of skin friction in
the reversed region. This suggests the kinds of measurement needed to distinguish between models. Comparison
of the experimental data with the computations reveals that the two-equation models permitted the location of
the onset of the increased surface pressure ahead of the compression corner to be computed quite well. For

o = 20°, these models yield excellent pressure distributions over the separated zone and on the deflected
surface beyond reattachment. For o = 24°, the calculated pressure in the separated zone is somewhat high,
although ahead of separation and after reattachment the pressure is again evaluated quite well.
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The zero-equation and one-equation models show late onsets of pressure prise, then overshoot the data,
and then blend with the data far downstream. The comparison with the skin-friction data do not show all the
same trends in the computations with the different models. The two-equation models define the position of
the onset of the fall-off of skin friction, and the other models again lag this. The fall-off of the skin
friction given by the two-equation models is faster than the data show, so that the points of separation are
predicted upstream of where they actually are. The two-equation models also yield too long a separated
region so that reattachment is calculated to be downstream of the experimental results. The comparison is
inconclusive, regarding which of the models best fits the downstream data, except that the algebraic model
yields results that.consistently fall Tower than the data.

Figure 13 compares the computations and measurements of the effect of Reynolds number on the extent of
the upstream pressure influence ahead of the compression corner. The distances considered are shown schemat-
ically in the left-hand sketch in Fig. 13. Two deflection angles are considered: o = 16° and o = 20°.

It is seen that the observation made earlier that the two-equation models evaluate the position of the onset
of the pressure rise best is borne out in the figure over the entire range of Reynolds number covered in
the experiment.

Another example in which computations with the two-equation model have been compared with experimental
data is the work by Viswanath et al. (Ref. 40). The experiment was conducted at the trailing edge of a
flat-plate test model that terminated with a 12.5° total included angle wedge. In the example cited here,
the model and wedge trailing edge were both kept at zero angle of attack to an airstream at M = 0.7.
Figure 14 compares measurements of the mean-velocity profiles just upstream and downstream of the trailing
edge with computations employing the two-equation model and an algebraic model (Ref. 4} in both Navier-Stokes
and boundary-layer equation. The high chord Reynolds number of 40 x 10 ensured a fully turbulent boundary
layer well ahead of the trailing edge. In this figure, 6, represents the momentum thickness of the boundary
layer 0.4 cm upstream of the trailing edge; it is equal to 0.2 cm. The computations employing either model
in the Navier-Stokes equations agree better with the data than the same models in the boundary-layer computa-
tions. Under these conditions, either on the wedge or just beyond the trailing edge, the flow is more sensi-
tive to the interaction between the shear flow and the inviscid flow regions than to the particular turbulence
model. Apparently the rate of change of the mean motion, even this close to the trailing edge, is sufficiently
slow for either an equilibrium-model or a two-equation model to still apply. Farther downstream in the wake,
both models and both computation techniques yield essentially the same results. It is important to note that
the sudden removal of a surface downstream of the trailing edge did not cause any difficulties with the near-
wall modifications represented by Eqs. (31), as they blended smoothly toward their asymptotic values farther
in the wake.

The final example cited here is the response of a turbulent boundary layer to a sudden application of
transverse shear, as studied experimentally on an axisymmetric rotating body in Refs. 25 and 26. A sketch of
the model configuration is given in Fig. 15. The free-stream velocities in these experiments ranged from
10 to 19 m/sec. A comparison of the data from the two experiments with a mixing-length model (Ref. 42} modi-
fied with Eq. (45), the two-equation and RSE models, and the ARAP model (Ref. 37) has been represented in
Ref. 43. In the computations with either of the eddy-viscosity models, it was necessary to introduce an
additional assumption regarding the ratio of the eddy diffusivity corresponding to the transverse flow to
that of the longitudinal flow. The need for assuming some value for the ratio is an inherent problem in the
application of any scalar eddy-viscosity model to a three-dimensional boundary layer. In the computations
with the two-equation model, this ratio was set equal to unity, as it was for the mixing-length model in
Ref. 42. It was found in Ref. 43 that computations based on the simple mixing-length model yielded results
in general agreement with the measurements of the mean flow. The two-equation and RSE models showed compari-
sons that were only somewhat better than the simpler model. The improvement achieved by the second-order
closure models seemed to be Timited by too rapid a response to the transverse shear. The relative agreement
between the RSE model and the scalar eddy-viscosity models can be explained by reference to Fig. 15 where the
ratio of the eddy viscosities calculated from the RSE model are compared to the data from the two experiments.
First, it is observed that the two similar experiments result in data in serious disagreement. The appro-
priate ratic cannot be established experimentally. The RSE wwdel, with or without the effects introduced by
transverse curvature, shows that the ratio of eddy viscosities remains within x10% of unity over most of the
transverse boundary layer, as assumed in the eddy-viscosity models. Near the outermost edge of the transverse
boundary layer, in the vicinity of the onset of the transverse shear, the ratio drops to a smaller number.

As there is 1ittle momentum change near the boundary-layer edge, differences in eddy viscosity such as these
have negligible effect on the transverse-velocity profiles. Thus, the choice of the eddy viscosity ratio of
unity in the simpler models is not inconsistent with the evaluation of the RSE model.

Concluding Remarks Regarding Statistical Modelling

From the foregoing set of comparisons of experimental data and computations employing a pair of fixed
second-order closure models, and with other models as well, it is observed that the second-order closure
models generally have a broader range of application than do the algebraic closure models. The two-equation
eddy-viscosity model is accurate over a large range of Reynolds numbers for attached two-dimensional incom-
pressible or compressible boundary layers on impervious surfaces, even those with small zones of separation.
The Reynolds stress model, in addition, has advantages when sudden changes in the mean flow occur, for surfaces
with streamwise curvature, and in three-dimensional boundary layers. Both models show the Favre mass-weighted
dependent variables account well for compressibility, even with rather large 9p/3x, and also can account for
modest effects of transverse curvature.

These models still require adjustments to increase their breadth of application. For example, the two-
equation model needs an extra rate of strain added to the mixing-energy equation to account for the effect of
streamwise curvature on a boundary layer. This ad hoc correction is very successful, practically, for
boundary-layer calculations. In the Navier-Stokes form of the model, however, it has not yet been made to
account for rapid turning within a flow. Nevertheless, the trailing-edge example cited did not seem to need
this correction. Both models are unable to completely relaminarize an incompressible boundary layer in strong
favorable pressure gradient. This is not a general failure of second-order models; another second-order
closure model (Ref. 13) has been somewhat more successful in accounting for relaminarization than the models
given here. Both models also require major changes in their surface boundary conditions to account for sur-
face mass transfer or roughness. Finally, second-order models still require special treatment in regions
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approaching irrotational flow. In conclusion, then, although the second-order closure models have shown a
broader range of application than simple mixing-Tength methods, they are not universal and need further
development to broaden their range of application, especially for boundary-layer flows that interact
strongly with the surrounding irrotational flow.

LARGE EDDY SIMULATION OF HOMOGENEOUS TURBULENCE

The background and status of the techniques of Targe eddy simulation were recently reviewed by Ferziger
and Leslie (Ref.|44). They gave particular attention to the methods for modelling the subgrid stresses
expressed as <ujuj> in Eq. (14). To demonstrate the realism attained with the technique, the results of
channel-flow computations were compared with data for mean-velocity profiles, Uj in Eq. (13), and mean
moments, such as the pressure strain correlations. A more complete analysis of the simulation of channel
flow appears in the Kim and Moin paper of this conference (Ref. 45). To supplement those papers and to
demonstrate the value of turbulence simulation to statistical turbulence modelling, this author will examine
w?at can be learned regarding statistical Reynolds stress modelling from large eddy simulations of Tocalized
flow situations.

The author is indebted to his colleague Dr. Robert Rogallo, who generously provided the results of com-
putations he is performing on homogeneous turbulence that is experiencing decay, normal straining, or uniform
shear straining. The Rogallo code has been described in Ref. 46, but has since been modified to accept uni-
form shearing. The code has certain unique features. The turbulence is computed in a volume of fluid that is
followed in time and is defined by coordinates that move with the assigned mean velocity. 1In this moving
frame of reference, the turbulence is spatially homogeneous. The boundary conditions on the computational
volume are treated as periodic in space, which permits use of full spectral methods in the computations.

The code is efficient and accurate because particular care has been exercised to conserve energy and minimize
aliasing. Al1 variables are expressed in dimensionless form and related to physical quantities (subscript e)
with scaling coefficients o and 8 as follows:

Wave number or length k gk , L,=p8"L

e e
Energy Eo = o7 lE
(50)
Kinematic viscosity vg = a”l/2g1y
Time to = al/2g1t

It should be noted that the kinematic viscosity is treated as constant.

In operating the Rogallo code, the turbulence is initially assigned an overall intensity with an arbi-
trarily assigned three-dimensional spectral distribution. In addition, the mean strain rate and kinematic
viscosity are also assigned. The turbulence is then oriented in phase space randomly while conserving mass.
Because of the use of random phase, the components of turbulence velocity in each direction are uncorrelated
so that no shear stress exists at time = 0. In the presence of a mean shear, the shear stresses develop in
a short time and the computed results become independent of the particular random phase distribution that was
used to start the calculations. The initially assigned spectrum also readjusts to be consistent with the
assigned strain rate and kinematic viscosity, and the instantaneous turbulence intensity.

The spectral range used in the calculations shown here has a ratio of the maximum to minimum wave number
equal to 31. This ratio is established by (1) the storage capacity of the ILLIAC IV computer, which permits
computations over volumes in phase space having 64 mesh points in each of three directions; and (2) the need
for using two mesh spacings to define the minimum resolvable wavelength. Although this represents a very
Targe number of computational mesh points, this spectral range is still inadequate to capture the range of
wave numoers that is significant in a real turbulent flow, except for one at very small turbulence Reynolds
numbers. Capturing the bulk of the significant eddy sizes and avoiding the use of a subgrid model is called
an "honest" calculation. The Reynolds number appropriate to an "honest" calculation is an order of magnitude
or more smaller than exists even in small scale Taboratory experiments. If an "honest" calculation was to be
compared with a Tow Reynolds number experiment, the physical output of the computations would be found from
the calculations through Egs. (50) after establishing « and g from the values of v and E used in the
calculations and the v, and E, of the experiment. An alternative interpretation of these "honest™ calcula-
tions is to consider v used n the computations as an effective viscosity, which from Eqs. (13) and (14) is
equivalent to the use of a constant eddy-viscosity subgrid model

upui> = (vgpp = VUG 5+ 0 ) (1)

Emphasis is placed on the computation of the Targest eddies in the flow, with the larger effective viscosity
and a higher than real spectrum at the upper end of the wave numbers used to account for the dissipation that
actually takes place at the wave numbers well beyond those in the computation. This approach presumes that
the distorted spectrum at the upper end of computed wave numbers does not significantly alter the cascade of
energy out of the energy-containing eddies at the low-wave-number end of the spectrum. In this approach,

the scaling parameters o and 8 in Eqs. (5) can be established from comparing the calculated large eddy
characteristics and corresponding quantities found in an experiment.

To test the validity of this alternative interpretation of Rogallo's calculations, the computed results
from several cases were compared with data obtained in the experiment by Harris et al. (Ref. 47) in which a
rather complete set of turbulence measurements was made in a nearly homogeneous shear flow. When the com-
puted macroscales and turbulence kinetic energy were matched to the corresponding experimental quantities in
the region where the experiment reached an asymptotic behavior, the o and 8 needed to utilize Egs. (50)
were established.

It was found that the best agreement between computation and experiment occurred when the effective
viscosity in the computation was 15 times the molecular kinematic viscosity. A comparison of several computed
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and measured statistical properties is presented in Table 1. The computations show a kinetic energy dissipa-
tion rate that is about 20% higher than the rate inferred from the measurements. This difference may not be
significant however, because the energy dissipation rate is difficult to measure accurately. It is made up
of direct measurements plus inferences regarding local isotropy of the small dissipative wave numbers. The
excellent agreement of the mean velocity gradients indicates the large turbulence structure is properly
related to the mean flow in the computation. The remaining excellent comparisons between the Reynolds stress
quantities is strong evidence that the computation is capturing the larger eddy structure that is principally
responsible for these quantities. This conclusion is further supported by the comparison of the computed and
measured two-point correlation coefficients for u, in the three Cartesian directions that are shown in

Fig. 16. The general character of the experimental curves in each direction is represented very well by the
calculations. Some of the weaknesses of the calculations are also demonstrated in this figure. The curve of
Ry1(r,0,0) is higher than that plotted from the data for the smaller separation distances. This is an indi-
cation that the smaller eddies or high-wave-number eddies in the experiment are not well represented by the
computations. This was expected in a computation with Timited resolution, and one in which emphasis is on
accurately computing the larger eddies. In addition, it is noted that Ry;(r,0,0) has not vanished at

ri/Ly = 4.9, which corresponds to 1/2 the length of each side of the computational volume. This suggests the
computational volume used may have been too small and that the largest eddies could be sensitive to the
periodic boundary conditions that were imposed. Even with these shortcomings, the remarkably good agreement
between the experimental data and the computations encouraged the author to utilize the computations as a data
base to examine some of the assumptions employed in statistical Reynolds stress modelling.

For a uniform homogeneous turbulent shear flow, the Reynolds stresses are given by

Du,? — —

5E ° ~2untp Uy, + 2puy g - 2v[(uy )2+ (uy )% + (u) 4)?] (52)
Du,? —

- = +2pu, - 2[{u, )7+ (uy ,)% + (u, 5)2] (53)
Dug? e

- + 2puy 5 - 2[{uy )% + (u, L)% + (u, ,)7) e

and ? 5

Duyu,

Dt = “Urlp Up,, * Pl Uy ) - 20Uy Uy g Uy U, f Uy, 54;,5] e

Closure of these equations requires expressing the correlation of pressure and rate of strain and the dissi-
pation terms containing v in terms of the Reynolds stresses, themselves, and the mean flow. The pressure
rate-of-strain model to be evaluated here is represented by Eqs. (36) and (37). The dissipation terms in
Egs. (51) through (54) are usually replaced by the symbols ej1, €22, €33, and €7,. In terms of these quan-
tities, the dissipation of the turbulence kinetic energy is given by

(e11 + ¢ (56)

22 * €5)

roj—

g =

It is usually assumed in modelling that the dissipation takes place at the smallest eddies and is, therefore,
an isotropic phenomenon represented mathematically as

~n

81‘]- =3 eG.lj (57)

To learn if the computations are consistent with the assumption of isotropic dissipation in a shear
flow, the computed values of €435 corresponding to each Reynolds stress are plotted against a measure of the
anisotropy, ujuj/e - 2/3 8ij, 1n"Fig 17. The values corresponding to the different Reynolds stresses for a
range of turbulence Reynolds numbers generally lie along a straight line with a slope of about 0.7. If the
dissipation had been isotropic, in the coordinates of the figure, these points would have been located on the
axis or at an ordinate equal to zero. The computations show the dissipation to be anisotropic and require
that Eq. (57) be modified to

Uil
1) 2
eGij + 0,7 (-———e -3 Gij)e (58)

for the shear flow. What is normally termed dissipation in a large eddy simulation actually represents the
component energies that are cascaded toward the high wave number end of the calculation to be then drained
from the calculation by the subgrid model. It is no surprise then that the cascade process reflects the
anisotropy of the larger eddies. The emphasis on the behavior of the large eddies possibly is an advantage:
it may be just what is required in Reynolds stress modelling, which also addresses the behavior of the
larger eddies.

€ss =

N

wlro

Figure 18 shows the components of dissipation as functions of anisotropy for the case of a turbulent
flow relaxing after it had been instantaneously distorted with normal strains in the x, and x3 directions.
In this case, the computed results generally lie along the coordinate axis and the dissipation is approxi-
mately isotropic even though the flow itself is still anisotropic.

The homogeneous flow relaxing after instantaneous distortion by normal strains is also an excellent
case for examining the first term in the pressure rate of strain relationship represented by Eq. (36). The
terms in Eq. (36) preceded by o, B, and y are identically zero in the absence of continuing mean strain.
The €, were evaluated from the computed turbulence moments for a case distorted in all three directions.
It was found that C; was reasonably insensitive to the direction of the component considered. The ¢,
(based on U2) is plotted as a function of the turbulence Reynolds number e2/evess in Fig. 19. The numbers
adjacent to the symbols represent the magnitude of the largest anisotropy in the three components. Three
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different values of vefs were used in the calculations to extend the range of the turbulent Reynolds number.
It is observed that if the largest component of anisotropy is less than 0.25, that is, if

2
- -3 S_I.J. < 0.25 (59)

the values of C; collapse onto a single curve. For those values of isotropy where the points depart from
a single curve, the Tinear form of the Rotta term expressed in anisotvopy can be considered to have failed.
It is also noted that for values of anisotropy satisfying (59), the so-called "constant" C, still has a
strong Reynolds number dependence.

The value of C; was also evaluated from the homogeneous shear flow computation of the pressure rate-
of-strain correlation and Eqs. (36) and (37). To do this most simply, the interrelationships between a,
8, and vy derived by Launder et al. (Ref. 14) following Rotta's suggestion (Ref. 8) were utilized. The ¢,
formed from these computations is plotted as a function of turbulence Reynolds number in Fig. 20. Again,
the maximum anisotropy is indicated at the plotted points. For comparison, the C; from the normally
strained flow, with the value of maximum anisotropy characteristic of shear flow, are also plotted on the
figure. Shearing the flow tends to increase the turbulence Reynolds number so that the regions of the two
flows do not overlap. The same magnitude of anisotropy is used for both flows to account for a similar
departure from the linear Rotta form in each. It is observed that the line segments associated with the
different types of flow fields do not appear to form a common curve. This would imply that the pressure
rate-of-strain model represented by Eqs. (36) and (37) is not as universal as is suggested by its tensor
form. It is most interesting, however, to note that if the C; is considered to be the coefficient of the
sum of the pressure rate-of-strain correlation and the anisotropic dissipation, the dashed curves on Fig. 20,
the two flow fields tend to produce a common curve. It appears that only the sum of the dissipation and
pressure rate-of-strain can be modelled universally. This observation is consistent with the theoretical
approach adopted by Lumley and Newman (Ref. 48). It should be noted, again, that the anisotropy on the
figure is outside the region of applicability of the Rotta relationship and that shear flows with lesser
anisotropy would require larger values of C; for the pressure rate of strain contribution.

The values of Cy, a, B, and ¥ that conform to the high end of the turbulence Reynolds number in these
calculations are shown in Table 2 along with those used in the Launder et al. (Ref. 14) model and the RSE
model described here. The agreement between the computations of Launder et al. and those of Rogallo is
excellent and is primarily due to the ability of the computations to yield good values of the Reynolds
stresses in equilibrium shear flow (Table 1). The requirement of & = £ 1in the RSE model apparently requires
considerable compensation in all the other terms to result in the proper Reynolds stress ratios for uniform
shear flows.

Concluding Remarks Regarding Large Eddy Simulations

Although this demonstration of the use of large-eddy simulations for guiding Reynolds stress modelling
has been limited to homogeneous flows, its utility as a research tool shows great promise. Although the
procedure is quite costly in terms of computer time (the calculations shown here require about 1.5 hr
ILLIAC IV time per test case), the potential gains in computer technology (Ref. 1) should make large eddy
simulations a research tool that will be available to most research laboratories in a decade or so. It is
this author's belief that research activities involving coordinated theory, experimentation, and computer
simulations will in the reasonably near future not only bring about a much clearer understanding of the
physics of turbulence, but may even permit the development of predictive engineering methods for flow fields
of technological interest.
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TABLE 1. COMPARISON OF ROGALLO'S SHEAR FLOW CALCULATIONSa
WITH THE EXPERIMENTAL DATA OF HARRIS, GRAHAM, AND CORRSIN

Quantity Experiment Computation
Dissipation rate, cm? sec™3 3.28E+04 3.92E+04
Mean-velocity gradient, U; , sec-! 44,0 45,3
Angle of principal stressed, deg -22.3 -22.6
Ratio of principal stresses 4.06 5.24
u1u1/e 1.00 1.01
Usus/e 0.40 0.36
usug/e 0.60 0.63
-u1u2/e 0.30 0.33

aSca]ing established by matching turbulence kinetic energy
and streamwise macroscales. Turbulence model veff/v = 15.

TABLE 2. PRESSURE RATE OF STRAIN CORRELATION
MODELLING COEFFICIENTS

Launder, Reece, and Wilcox and Rogallo's
Rodi model Rubesin model  computations
€, 1.5% 4,59 1.5%
o 0.76 0.5 0.78
8 0.1 0.5 0.23
Y 0.36 1.33 0.55

“Includes effects of anisotropic dissipation.
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A NAVIER-STOKES FAST SOLVER FOR TURBULENCE MODELING APPLICATIONS

J. D. Murphy and M. W. Rubesin
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SUMMARY

A computer program for the solution of the steady Reynolds averaged incompressible Navier-Stokes equa-
tions that can accept a variety of turbulence closure models is described. The program is sufficiently
accurate and economical to permit extensive comparisons with mean moment data from experiment. Such a com-
puter program should provide a useful tool to the turbulence modeler because of the generality of the models
which can be considered and the economy with which solutions can be obtained.

In the present study 0-, 1-, and 2-equation closure models are considered and the computed results com-
pared with experiment and with results of boundary-layer calculation using the same models. From these com-
parisons one may conclude that flow parameters which are sufficiently severe to provide strong tests of
higher order closure models are also sufficiently severe as to cast doubt on the results based on classical
boundary-tayer calculations. To demonstrate the accuracy and speed of the program parametric studies are
presented which show the effects of both purely numerical considerations, such as mesh size, convergence
criteria, boundary location, etc., and physical consideration such as boundary conditions, etc.

It is believed that the present computer code is more general than previously available fast solvers.
No near-wall equilibrium assumptions have to be made, as both the mean flow and turbulence closure relations
are integrated all the way to the wall.

INTRODUCTION

A realistic assessment of the probable advances in both computer design and algorithm develooment indi-
cates that for the prediction of turbulent flows the Reynolds averaged equations of motion solved over rela-
tively coarse grids will 1ikely be the most sophisticated computational design tool generally available to
engineers over the next decade. This places a major burden of improving our predictive capability on improved
turbulence modeling. Because of the inherent empiricism of such models, this improvement requires a large
data base from detailed and reliable experiments. In addition, a tool must be available that can make accu-
rate and economical comparisons between these data and proposed models. One such tool is the subject of this
paper. We propose a fast-solver for the Navier-Stokes equations capable of incorporating various first- and
second-order closure models.

The so-called first-order closure models, in which the Reynolds stresses are assumed to be unique func-
tions of the mean-velocity field, have been developed over the past 40 years to the point where they have
minimal further potential and are still inadequate to treat flows undergoing rapid changes in boundary con-
ditions. The next logical step is that of second-order closure, in which the Reynolds stresses are related
to one or more properties of the turbulence itself, through differential equations. Although the second-
order closure concept was proposed more than 30 years ago, it has only during the past decade been seriously
considered as a predictive tool for engineering applications.

The case for second-order closure may be put in better perspective by considering its advantages and
disadvantages vis-a-vis simpler modeling. First, in contrast to mixing length theory, for example, there
exists a potential in second-order modeling for relatively broad application as the modeling forms themselves
have been drawn from more than shear flows. Thus, they may be able to treat flow fields containing different
classes of flows, for example, attached boundary layers, separation bubbles, vortex motions, and local jets.
Because the models have drawn upon data from different types of flows, these models often have the disadvan-
tage of being less accurate for a specific flow than are the more empirical first-order closure models.
Second, as a result of the above, the computer logic for treating complex flows need not keep track of sepa-
rate zones and need not switch either models or constants on and off. The modeling equations themselves,
however, are much more complicated and due to a Targe range of eigenvalues, that is, stiffness, are less
tolerant of breaches of mathematical etiquette, and hence are computationally more costly. Finally, second-
order closure may provide a predictive capability in the sense that once confidence can be established in a
model it may be reliable outside the range of experimental verification.

From the above it is clear that the potential advantages of second-order closure methods warrant their
further development. In this paper we describe a computer code for the evaluation and/or optimization of the
predictive potential of second-order turbulent closure models in simpie two-dimensional flow configurations.

The bulk of this paper is made up of the description of a procedure for the numerical solution of the
steady constant property Navier-Stokes equations together with algebraic, and one- and two-differential equa-
tion turbulence closure models. Since we consider only the steady equations, a relaxation procedure is used
and a first guess of all variables over the whole field is required. This first guess is generated within
the program as the solution to the boundary-layer equations. The advantages of this technique are twofold:
first, boundary-layer solutions are obtained as a by-product of the Navier-Stokes solutions permitting an
evaluation of boundary-Tayer theory for a particular fiow, and second, a generally very good first guess is
obtained leading to rapid convergence and hence Tow computation costs.

In order to illustrate the potential of the present method we present comparisons of four different tur-
bulence models with several sets of experimental data. In addition, parametric studies of the effects of
initial conditions and boundary conditions, are described. The effects of purely numerical parameters, such
as mesh size, boundary locations, and convergence criteria are presented in an appendix.

Finally a table of computation time for all the results presented is provided to demonstrate the utility
of the present method even under the constraint of a relatively modest computational budget.
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ANALYSIS: THE MEAN FLOW EQUATIONS

The equations of motion for a constant property steady flow in Reynolds averaged form may be written as:

du AV _
ax T 3y 0 (1)
9T 9T
u, ,ou_ _13p 2%u , 2%u xx , T xy
Usx * Vaoy © pSX+\)<3X2+3y2 taxo oy (2)
2 2 9T 9T
Wy av_ _Top o f%v, a%v) " xy " yy (3)
X oy oy ax2 Syz X oy
which provides three equations in the six unknowns u, v, p, Tyxx» Txy> and tyy. Here, txx and tyy are the

Reynolds normal stresses and txy 1S the Reynolds shear stress. In”the present study the systein of equations
is closed by introduction of a generalized scalar eddy-viscosity via the constitutive relation.

U, ou ,
-2 T3, ) - -
TiTT3 eﬁij + 25[2 <3XJ- + 3"1')] = uiuj . (4)

Evaluating the Reynolds normal stresses from (4) and substituting in (2) and (3) we obtain:

St oy = 0 (5)
g_-gy;_;_y(pgp)(g_%)%lz;_yg_y )
Txy © E(%% * %%) (8)

We note that the substitution of the Reynolds normal stress relations from (4) while the Reynolds shear
stress in (6) and (7) and its defining relation (8) are retained, is somewhat arbitrary. This condition is
an artifact of the development of the numerical solution procedure. It permits the imposition of continuity
conditions on the Reynolds shear stress, which in turn facilitates convergence while keeping the matrix
block size at 8 x 8. Equivalent treatment of the Reynolds normal stress would increase the block size to
12 x 12.

The variables are normalized as U = u/Up, Vv = vW/Re/Uy, X = x/L, and ¥ = y/Re/L and the dimensionless
stream-function and vorticity are introduced, such that

ﬂE.- —Bip-
2y u and oxX

L
1
<

After much manipulation we obtain

Yo 22, 1 0% (9)

5y2 Re 532

327 327

Bpow _opow_ dfw 1%, T xy 17 xy, 4 9% e 3% (10)
3y X  9X oY 852 Re 3%2 2y? Re 432 Re 3Xdy u aXdy
= e, 2%
Ty ~ v (w Re 322) amn
Equations (9)-(11) are solved with the boundary conditions; at
-= :Ep—=
y=20 ¥ 3y 0
Ua(x)
-=- ﬂ: e =
Y= Ymax oy U, °° 0 [
(12)
X = X, b= w(xgy) 5w = w(xgsy)
X = Eqs. (9)-(11) with

MaX  1/Re set to zero

These relations together with one or more relations defining the eddy viscosity form the system considered
here. The equations are solved on a reduced computational domain shown schematically below. Since the
relation(s) used for eddy viscosity vary from model to model they will be discussed under the heading of
the appropriate model.
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The numerical procedure used to solve E?s. (9)-(11) given ¢/v 1s a generalized Galerkin method c1ose1y
paralleling that of Ref. 1. In brief, Eqs. (9) and (10) are integrated over the interval y to y

The Taylors series expansions

AV2 vE] ol
! = Ay< m Ay® v AYT
Viger T Yyt VisAY + Uy ST 0l 3R iy T
! = ' ! éay_ v __A_\E
Vigen T Vig t WA U BT R gy
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where
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\P'V - '1]+1 1 i
iJ Ay
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= + Ay + éyi
igen - %3 T 9 T 955 2 (13)
where
We, . = WY,
BT o s N
ij Ay
and
Rk abay +oal A2
ij+1 iJ iJ ij 2
where
=1 - =1
_ - T_i -+1 T_i.
i3 Ay

impose continuity of value and derivatives. This procedure, the integration and incorporation of Taylors
series expansions, provides a system of ordinary differential equations in "X" in which the values and "Y"
derivatives of stream function and vorticity appear as dependent variables. Readers interested in more detail
on the discretization process should consult Ref. 1.

The integrals of Egs. (9) and (10) with Egs. (11) and (13) provide a system of 8N-6 ordinary differential
equations in the 8N unknowns for j = 1,N. The boundary conditions (10) with the additional conditions;

v = = "
at y=0 Wi T ¥

by by n 1 BZ\PN
at Y= Ypax  ViN t Re a%2 0
prov1de a closed mathematical system. These latter two conditions are required by the higher order differ-
encing in y and are simply special forms of the definition of vorticity appropriate_to the boundaries. The
X dependence is treated by second-order-accurate implicit finite differences. The Xx dependence of the
convective terms is represented by three-point backward differences and the diffusion teams by three-point
central differences. This results in a system of 8N algebraic equations in 8N unknowns at each X station.

Although the discretization outlined above differs markedly from the usual, it is related to the compact
approximation schemes that are now gaining attention. It can be shown to be fourth-order accurate in velocity
and has the advantage of the direct specification of derivative boundary conditions without special treatment.
Due to the high accuracy in y, a relatively sparse nodal array may be used while retaining reasonable
accuracy. _

The system of algebraic equations is solved by a Newton-Raphson iteration that is equivalent, in this
case, to a line relaxation method with unity relaxation factor. The resulting 8 x 8 block tridiagonal matrix
is solved by L-U decomposition (Ref. 2). This latter procedure for laminar flow provides about an order of
magnitude speed as compared with the scheme of Ref., 1.
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TURBULENCE MODEL EQUATIONS

The above mathematical formulation has been carried out under the tacit assumption that the nondimen-
sional eddy viscosity & would be available as required by mean-flow calculation scheme. With the exception
of Egq. (11), all of the relations describing the turbulence parameters are isolated in subroutines, each of
which define a single model.

For those models_that require the solution of a partial differential equation, the discretizations are
carried out in both x and y by standard three-point second-order accurate implicit finite differences.
This technique was used instead of the splined Galerkin scheme of the mean flow equations because the ease of
both analysis and programming of these techniques, relative to the Galerkin procedure, permits a rapid assess-
ment of a particular model without the investment of a great deal of effort. In addition, the demonstration
that the numerics of the turbulence equation solution need not be identical with the mean flow equations would
permit users unfamiliar with splined Galerkin techniques to produce alternative turbulence model subroutines
using standard techniques. In order to retain a consistent level of accuracy between the fourth-order mean
flow solution and the second-order turbulence model equations, the latter have been solved on a finer mesh.
Typically, three or four mesh intervals of the turbulence model equations constitute one mesh interval in the
mean flow equations. Although this decoupling reduces the computational speed of the overall scheme, the
authors believe that the additional flexibility introduced warrants the sacrifice. The solution procedure for
the turbulence equations, once discretized, parallels the iterative method of the mean flow equation. The
Tinearization used lags the mean flow and eddy viscosity by one iteration, in the solution of the turbulence
equations.

Before we consider individual models it is useful to digress for a moment to consider certain conceptual
problems that arise when turbulence models, developed within the framework of a boundary-layer theory, are used
in conjunction with the Navier-Stokes equations. The fundamental problem arises from the fact that y
approaches &, to the boundary layer approximation, the strain and the vorticity are identical while for the
Navier-Stokes w = (8uj/axj) - (8uj/axi), while Sij = (aui/BXj)+-(auj/ax1). The boundary condition of zero
vorticity applied to the Navier-Stokes equations does not necessarily imply zero strain, and from this fact a
whole host of problems arise. In particular we Tose an unambiguous definition of the boundary-layer thickness
and concommitantly of the edge velocity and boundary-layer integral parameters. This may not seem important
until one realizes that the turbulence length scale for algebraic and one-equation models is generally a func-
tion of & or §”. In addition, for the two-equation models, finite strain for y > & gives rise to nontrivial
turbulence production in the outer flow which can, for some boundary conditions, produce completely irrational
solutions.

In order to circumvent these difficulties we have adopted the following ad-hoc procedure. We define
the boundary-layer thickness as the smallest value of y for which (u/ue) > 0.9 and ¢" < 107% yflax and
for y > & we define the eddy viscosity as & = & exp[(y - §)/6]. Clearly, other procedures are possible for
the definition of &, for example, that used by Lomax and Baldwin (Ref. 3), but all of those familiar to the
authors invoke some kind of equilibrium assumptions.

Zero-Equation Model

The zero-equation model considered in the present study is the two-layer Cebeci-Smith model (ref. 4)

written as:
E1
€ =min{_
€o
where
- 1 3u
. = — (0.4yD) 2|5
ey = 5 (0.4yD)2152
€y = 0.0168 Red*
and

+/7p+
D=(1-eY /A
AT = 26(1 - 11.8p*)"1/2

- __v_ 3
p pUs X

Although many other mixing length based models have been proposed, this model works quite well for equilibrium
flows and is in reasonably general use. It can, therefore, serve as a useful standard of comparison for
higher order closure models.

For attached flow, no special numerical techniques are required. Near the separation point, however,
large percentage changes can occur in & near the wall from iteration to iteration; the changes result from
relatively small absolute changes in au/ay. To surmount this difficulty, in the neighborhood of separation,
we under-relax the eddy viscosity, that is,

~Mm+1 m+1 =M
€ - &)

="+ g(E
where m dis the iteration number and 8 the relaxation factor.

Solutions have been obtained for g = 0.1, 0.2, and 0.4, which are independent of g. For B = 0.6
no convergence was obtained.
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One-Equation Model

The simplest of the second-order closure models requires the solution of an additional nonlinear partial
differential equation. For this study we chose the Glushko Model (Ref. 5) as extended by Rubesin (Ref. 6).
This model was selected over that of Bradshaw et al. (Ref. 7) because of mathematical convenience, because
the constitutive relation for stress as a function of strain is the same as for the two-equation models, and
because of a more rational extension to elliptic flows than is yet available for the Bradshaw model.

The equations describing this model for incompressible flow may be written (Ref, 6) as:

au,
ae 9e _ V3 = e , va = e . = _1_ = £
UGS+ v " By [1 + &(ar)] W t 1+ z(ar)] T \)eS_ij axJ. ev[1 + g(ar)] %
where
=12 u'2 w2
e = u———+—v—2—+—"i— the turbulence kinetic energy
€= %- the dimensionless turbulent viscosity

(M, 2 -
Sij =5 5;3-+ axi the mean strain rate

and ¢ 1is the turbulence length scale. To complete the model, the Glushko relations

_ Yey,
r T —
v
g = H(r)or
{
r r
— 0<—<0.75
Y‘o I"o
\H(r)=<—‘”—-<L-o75>2 0.75 s < 1.25
rO rO rO
1 1.25 < L
t Ty
N N
; 0 < s < 0.23
- <%i+ 0.37)12.61 0.23 < ¥ < 0.57

<1.43 - l)/z.t;z 0.57 < L < 1.48

8
and
a=0.2
o = 110
€ =3.93
A =0.4

were suggested by the author (Ref. 5). He also proposed the boundary conditions
y=0 e=10
e=0

Y = Yimax

This latter condition is required by the form of the equations for large y.
Two-Equation Models

Two two-equation models are considered here. The first, due to Jones and Launder (Ref. 8), was chosen
because it is a well-known model and is in relatively general use. The second, due to Wilcox and Rubesin

(Ref. 9), was chosen because of its familiarity to the authors and because it is an extension of the promis-
ing Saffman model (Ref. 10).
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The Jones-Launder model with low Reynolds number corrections may be written

3u. u 2
ok _ i, s T\ sk ak1/2
pUs === pT,, ==+ —= l{u + — } =] - | pe + 2u <———-—
TP (ERTIRTS < ok> axi] 3%y

2
U, u 2un
3e  _ € i 3 T 3¢ pe? T { 22u
, = = T e — == ] B —
PU; 3. = C1 g RIS a; <” * g axj) 7 a%y2

J J
where

up = Cupkz/e
C, = 0.09 exp[-2.5/(1 + RT/SO)]
C, =1.45
C, =2[1-0.3 exp(-RTz)]
o = 1
o, = 1.3
R - ok2
T ue

In the above, consistent with the notation of Ref. 8, k 1is the kinetic energy of turbulence, & the energy
dissipation rate, RT 1is a turbulence Reynolds number, ok and oc Prandtl numbers, and ur the eddy viscosity.

The Wilcox-Rubesin model may be written as

33U,
pu.a—e=p i +_8_ l:(u+o;e) _ae_:|_ B*pwe

Taes 7o
3 ax; 1j By 7 ax; aX;
2
dw? _ yw? oy 3 [ dw? 3%
PU; —— = pTay =+ —— |{u + ope) =o— |- |8 + 20 [ == |ouw3
3oy T e Py a7 g ax; 3%
where
*
c=YLE
w
.3 o 9 s =]
B=20> B 700 °°9 72
v* = [1 - (1 - 3%)exp(Req/Re)]
¥ = v [1 - (1 - A2)exp(-Re/R,)]
=10 = . 3
Yo s A=irs Re=1, R =2

1/2
Rep = 2820 g o e1/2y , yX o

In the above, e 1is the kinetic energy of turbulence, w the dissipation rate per unit energy, ReT is a
Reynolds number of turbulence, and o* and ¢ are reciprocal Prandtl numbers.

The outer boundary conditions imposed on both two-equation models are that all derivatives with respect
to "y" vanish. On the inner boundary, the turbulence kinetic energy is zero while, for the Jones-Launder
model, e =0 at y =0 and, for the Wilcox-Rubesin model, w = 20v/gy2 as y - 0.

For both two-equation models, under-relaxation of the iterative process is required. Initially, a
relaxation factor of 0.1 is required; it can be increased to 0.5 as the calculation progresses. Note that
all three of the second-order closure models have a mesh Reynolds number limitation, Repy = vay/v < 2.
Violation of this condition gives rise to large point-to-point oscillations which occur Tirst near the
boundary-layer edge.

PARAMETRIC STUDIES

One of the disadvantages of second-order closure from the computational viewpoint is the need to specify
additional in-flow boundary conditions for the intensity and scale of turbulence. Recently, one is more
likely to find that the experimenter has measured turbulence energy profiles; however, the distribution of
dissipation is usually lacking, being a quantity that cannot be measured directly and that requires arguments
regarding the isotropic character of dissipation to be evaluated. In order to generate these distributions
the following procedure was used. Using the boundary-layer code of Wilcox (Ref. 11}, for 3p/3x = 0 and
some small level of turbulence energy, the program was run through a simulated transition until the oredicted
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momentum thickness corresponded to the experimental momentum thickness at the first measurement station. The
values of turbulence kinetic energy and dissipation were then transformed and used as the in-flow boundary
condition on the present method for the Wilcox-Rubesin model. For the Jones-Launder model the same energy
profile was used and the dissipation profile was generated by assuming the eddy viscosity to be the same for
the two methods, yielding the relation

e = Cukw/y*

The utility of comparisons of second-order closure models with experiment hinges then on the sensitivity of
the solution to these upstream boundary conditions and the rate at which the effects of these conditions
washout in the downstream direction.

The effects of variations in the initjal conditions were checked under the flow conditions of experi-
ments chosen to be used as standards of comparison in the work that follows. These experiments are as
follows: the Wieghardt flat plate case (Ref. 12), the Samuel and Joubert increasingly adverse pressure
gradient case (Ref. 13), and the adverse pressure cases of Strickland and Simpson (Ref. 14), and of Simpson
et al. (Refs. 14 and 15), and of Schubauer and Klebanoff (Ref. 16).

For the Wieghardt flat plat case (Ref. 12), the Glushko model was run twice with the initial energy
profile multiplied by 0.9 and by 1.1, respectively. By the third streamwise station, a distance normalized
by the upstream B.L. thickness of x/8y = 25, the energy profiles of both solutions had equilibrated to
within about 1% of the original. Similar variations were imposed on the Wilcox-Rubesin model. With the
initial dissipation profile fixed, the initial energy profiles were multiplied by 0.9 and 1.1; and with the
initial energy profile fixed the dissipation profile was multiplied by 0.9 and 1.1. A comparison of these
four solutions showed behavior similar to that of the Glushko model for the +10% variations in the initial
energy distribution, and only a slightly stronger sensitivity to similar variations in the initial dissipation
distribution. Exactly parallel calculations were carried out for the data of Samuel and Joubert (Ref. 13)
with similar results.

Some difficulties with initial conditions were encountered with both the flows of Refs. 14-16. These
problems will be discussed in the next section in connection with the description of calculations for the
flows in question.

These experiments were chosen for comparison because, with the exception of the Wieghardt flow, they
_represent a class of flows, that is, flows with strong adverse pressure gradients, that severely strain our
present predictive capability.

RESULTS AND DISCUSSION

In keeping with the expressed goals of the present study, the principal result is that the computer code,
satisfying the specifications of efficiency and flexibility in accepting different turbulence models, is
complete and operational. The efficiency of the code is demonstrated by the execution time required, on a
CDC 7600, for 15 different calculations (shown in Table 1). One should note that the times cited include
solution to both the boundary-layer and Navier-Stokes equations. Typical run times can be seen to be less
than 1 min, which brings the use of the present code well within the reach of all but the most stringent com-
putational budgets. The flexibility of the code will be demonstrated by the specific results of applying four
different turbulence models to four flow configurations. These results in the form of skin friction distri-
butions, are presented in the following pages. It should be noted again that the intent of these figures is
to demonstrate the performance of the basic method and not to provide definitive comparisons of the various
models.

In Fig. 1 we compare the distribution of skin-friction coefficient as obtained from each of the four
closure models with the data of Wieghardt (Ref. 11). This experiment was chosen to provide a baseline com-
parison for all the models under equilibrium flow conditions. Note that once the starting transient has
damped, the Glushko model predicts a Cf about 10% too high, and the Wilcox-Rubesin model one about 5% too
Tow; the Cebeci-Smith and Jones-Launder models are probably within the experimental error band. Modification
of the modeling constants within the Glushko and Wilcox-Rubesin models could substantially improve their
agreement with these data (cf. Ref. 17). In the present study, however, we have elected to use the modeling
parameters proposed by the originating authors.

Figure 2 shows the streamwise distribution of free-stream velocity for the experiment of Samuel and
Joubert (Ref. 13) for an increasingly adverse pressure distribution. The experiment was carried out over
an extended period with the tunnel adjusted to provide Cp(x) and entry Reynolds number invariant with time.
The velocities plotted in Fig. 2 are provided for reference.

Figure 3(a) compares the boundary-layer and Navier-Stokes solutions for skin-friction coefficient using
the Cebeci-Smith model with the data of Samuel and Joubert. The difference between boundary-layer and
Navier-Stokes calculations for this case is due to some extent to the aforementioned difficulty in defining
s and 8* for the Navier-Stokes calculations. This hypothesis was verified by rerunning the calculation using
the &§(x) and 6*(x) computed in the boundary layer solution as the mixing length scaling factors in the
Navier-Stokes solution. These results are presented in Fig. 3(b). It can be seen that roughly half the
discrepancy between boundary-layer and Navier-Stokes solutions, for this case, is attributable to the uncer-
tainties in defining & and 8* din the Navier-Stokes calculations.

Figure 3(c) presents similar results using the Glushko closure model. The behavior of the Glushko model
here parallels that shown in Fig. 1. That s, the predicted skin friction rises sharply initially and then
predicts values which are 15% to 20% too high compared with the data. As in the case of the Cebeci-Smith
model the agreement worsens as the pressure gradient increases.

Figures 3(d) and 3(e) provide similar comparisons for the Jones-Launder and Wilcox-Rubesin closure
models. The initial excursions in Cf are apparently associated with inconsistencies between the energy
and dissipation profiles and the mean flow profiles at the in-flow boundary. The relatively poor performance
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of the Jones-Launder model in the region 0.84 < x < 2.4 is almost certainly associated with the choice of
in-flow boundary conditions. For x > 2.4, however, the Wilcox-Rubesin model appears to follow the trend of
the expériment more closely. These latter two figures demonstrate the sensitivity of the two-equation models
to in-flow boundary conditions on the turbulence properties and to the inadequacy of the present procedure
for determining them in general. However, because the optimum procedure for determining these conditions
will almost certainly vary from model to model, it was not considered to be fundamental to the present study;
therefore, it could be deferred to a subsequent effort or left to the modelers to devise.

The next flow to be considered is that of Strickland and Simpson (Ref. 14) and of Simpson, Strickland,
and Barr (Ref. 15). The most interesting point about these experiments, in addition to their complete
documentation, is the fact that the imposed pressure distribution leads to separation. The free-stream
velocity distribution is shown in Fig. 4. It is unfortunate that these data, insofar as they were reported
in Refs. 14 and 15, were obtained at relatively large streamwise intervals in the region of adverse pressure
gradient because it introduces, with the redundancy of measurement techniques (laser anemometer, pitot, and
slant and normal hot films), a degree of arbitrariness into the edge velocity to be matched in the calcula-
tion. The fairing used provides the largest velocity gradient that can be inferred from the data. Figure 5(a)
compares the predicted skin-friction distribution, from boundary-layer and Navier-Stokes solutions using the
Cebeci-Smith model, with the data of Refs. 14 and 15. Consistent with their behavior in laminar flow
(cf. Refs. 1 and 17), the boundary-layer equations tend to predict a "too early" occurrence of separation, as
compared to the Navier-Stokes equations. In fact, for this case the Navier-Stokes equations do not predict
separation to occur at all. Similar results are shown in Fig. 5(b) for the Glushko model. In agreement with
previous results, the Glushko model predicts a Cgf distribution somewhat higher in value than does the
Cebeci-Smith model.

The experimental behavior of turbulent separation, noted by Simpson et al. is that the streamwise ores-
sure distribution appears to relax immediately downstream of the intermittent separation point. This is in
sharp contrast to the laminar flow cases cited above, and to the turbulent flow case to be discussed, for
which we find that the strong adverse pressure gradient must be maintained well past the computed separation
point in order for the flow to separate. This is apparently the result of strong streamwise ellipticity in
the neighborhood of the separation point. The fact that the physical flow does not exhibit this behavior
argues for some different, or at least additional, mechanism to be active in the turbulent flow case. A
logical candidate for this additional mechanism, noted in Refs. 14 and 15, and consistent with the data of
Ref. 18, is a strong augmentation of the Reynolds normal stresses approaching separation. In order to
accommodate this behavior, it would be necessary to employ more complicated models than those considered
here. The authors were recently informed that Launder is currently incorporating an augmented normal stress
within a new two-equation model.

Pletcher (Ref. 19), using an inverse boundary-layer procedure specifies the experimentally observed
distribution of displacement thickness, was able to predict the separation point for this flow using what
might be called a half-equation model. He uses an ordinary differential equation for mixing Tength in the
outer flow. It is interesting to note, however, that the edge-velocity distribution predicted using this
method displays a velocity gradient ahead of separation that is roughly twice as large as that observed
experimentally. This implies that if a method such as that proposed in Ref, 20, an inverse boundary-layer
method driven to produce an imposed velocity distribution, were used the results might well be more consis-
tent with Navier-Stokes solutions presented here.

Simpson and Collins (Ref. 21), have also predicted the separation point in this flow using a modified
version of Bradshaw's model. The modification consists of the addition of Reynolds normal stress terms to
both the mean flow momentum and turbulence energy equations in an ad hoc fashion. It is noteworthy that
both of these techniques produce the desired results, that is, separation, but based on totally different
physical hypotheses. The Simpson-Collins approach was apparently guided by the experimental measurement of
Reynolds normal stresses and further emphasizes the need for good communication between the experimenter,
the modeler, and the computational workers.

The in-flow boundary conditions on the mean flow, that is, u(xg.y) and Cg(xq), for the calculations
presented up to this point, were deduced from the experimental measurements. For the Strickland, Simpson,
and Barr flows we were unable to obtain initial conditions on the energy and dissipation, using the previously
described procedure, which were sufficiently consistent with the experimental mean flow conditions to permit
the calculation to proceed. To circumvent this problem we used the Wilcox code (Ref. 11), starting near
X =0 with a Taminar flow, and allowing the flow to develop, through a simulated transition, under the
effects of the experimental pressure distribution. The in-flow boundary conditions at x = 2.63 m were
taken entirely from this calculation. The skin-friction coefficient was about 15% higher than that observed
experimentally and velocity profile was somewhat fuller in the near-wall region.

The Cebeci-Smith and Glushko models are shown in Figs. 6(a) and 6(b). The Targe differences between the
results presented in Figs. 5(a) and 6(a) are attributable solely to the differences in mean flow conditions
on the inflow boundary. Similarly, the differences between Figs. 5(b) and 6(b) can be attributed primarily
to the effects of mean flow initial conditions. Although some increment of this difference is associated with
differences in energy profiles at the inflow boundary, our experience cited earlier indicates that this is
small and damps rapidly.

Figures 6(c) and 6(d) present similar results using the Jones-Launder and Wilcox-Rubesin models. The
poor agreement of both two-equation models for this case is attributed to the inadequacy of our procedure for
obtaining initial conditions.

The final flow considered in the present study was that of Schubauer and Klebanoff (Ref. 16). Because
we wished to present at least one set of calculations that included a prediction of separation and reattach-
ment, we took some Tiberties with the edge-velocity distribution downstream of the location x = 7.0m
(x = 23 ft). To demonstrate the capability of the present method to predict a region of recirculating flow,
we extended the region of constant adverse velocity gradient to about 8.4 m and added a region of accelerating
flow for 8.9 < x < 9.8 m to force reattachment within the computational domain. The experimental velocity
distribution together with that used in the computation are shown in Fig. 7.
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Figures 8(a) and 8(b) show the results of applying the Cebeci-Smith and Glushko closure models, respec-
tively, to this flow using the experimental mean flow parameters as in-flow boundary conditions. The experi-
mental skin friction is plotted only over the region for which the experimental and computational boundary
conditions, ue(x), correspond. Again, the Glushko model produces a somewhat higher skin-friction coefficient
in the attached flow region than does the Cebeci-Smith model. The separation bubble predicted using the
Glushko model is somewhat larger than that predicted by the Cebeci-Smith model but in Tight of the uncer-
tainty in initial conditions the authors are hesitant to interpret this as being meaningful. The mesh con-
figuration for this flow was such that the streamwise extent of the bubble encompassed 8 nodes and the
stream-normal region of negative velocity from 1 to 8 nodes.

We experienced the same difficulty with the two-equation models with this flow as was described in con-
nection with the flows of Strickland, Simpson, and Barr. A parallel starting procedure was followed and the
results for the four closure models are presented in Figs. 9(a) through 9(d).

The interesting points to be deduced from these figures, which have not already been made, are that they
verify the authors' hypotheses that in order to obtain significant discrimination between turbulence models
they must be used to predict flows with rapidly varying boundary conditions, and that the introduction of
different turbulence models into any mean-flow-solution procedures cannot be considered a routine task, our
inability to obtain a converged solution in the Navier-Stokes mode for the Wilcox-Rubesin model being a case
in point. The investigator wishing to consider higher order closure models should be prepared to face sub-
stantial numerical difficulties in the development of reliable algorithms for these methods.

We turn our attention now to some observations that can be made from the collective results to date, and
from the results of other studies. Viegas, Coakley, and Horstmann, in a series of studies (Refs. 22-24) have
applied slightly modified versions of the models considered here to transonic, supersonic, and hypersonic
shockwave boundary-layer interactions using a Navier-Stokes code based on the MacCormack fast solver (Ref. 25).
Although it is impossible to make rigorous comparisons of the present results with those cited above, the
relative values of Cf from model to model appear to be consistent.

The difficulties faced by the present authors in the numerical solution of the two-equation models do not
appear to be unique to the present study. Coakley and Viegas (Ref. 22), for example, were forced to introduce
special bounding functions on the energy and length scale to prevent solution divergence.

We believe that the present method has certain advantages as a model test vehicle over that used in
Refs. 22-24, despite its restriction to incompressible flow. These advantages are the economy of calculation
and the innate high accuracy on a sparse mesh. Despite the fact that the restricted computational domain
requires the explicit specification of the in-flow boundary conditions on turbulence properties, it is con-
sidered to provide significant advantages in a model test vehicle. First, it requires the user to be aware of
the approximations involved in the generation of these conditions. Second, it permits the numerical evaluation
of discrete regions of the flow field in relatively fine detail without exhorbitant demands on either computer
time or storage. Finally it permits the imposition of the experimentally observed free-stream velocity dis-
tribution on the calculations so that differences between the predicted and experimental values of other
parameters, for example, Cf(x), can be attributed directly to the model in use, and should facilitate rational
model optimization.

Although the present algorithm is well suited to vector processing no advantage has been taken of the
7600 vector software so that the code can be used on other machines with only minor modifications.

Among the advantages of the present method relative to other incompressible Navier-Stokes solution algo-
rithms is the fact that it is fourth-order accurate in y on an arbitrary mesh and second-order accurate in
X on a uniform mesh. Since equal x-mesh size is used throughout, the lead-truncation-error term is of odd
order and numerical viscosity, which frequently clouds the results of other methods, is practically non-
existent. In addition, the solution is carried out over the whole mesh 0 <y < ypax and no near-wall
approximations are made.

CONCLUDING REMARKS

Substantial progress has been made toward the basic goal of the present study, which is to develop an
efficient and accurate test vehicle for turbulence models that can treat flows with recirculation. In addi-
tion, we have made a substantial effort to point out some of the problems that arise when higher order models
are used and particularly when they are used in conjunction with the Navier-Stokes equations.

Although the specific comparisons of the several models with each other and with experiment are not to
be considered definitive, because of difficulties in obtaining consistent in-flow boundary conditions, the
trends appear to agree with those of other investigations.

Finally, although the authors substantially concur with Liepman (Ref. 26) regarding the uncertainty of
the meaning of the Reynolds-averaged equations and the difficulty in assessing the utility of various models,
we believe that from the practical engineering point of view, modeling of turbulence within the Reynolds
averaged equations constitutes an upper bound on admissible complexity for at least the next decade. It is
to be hoped that methods 1ike the present will ease the path of those engaged in modeling to the extent that
the designer might ultimately have, if not a universal model, at least a family of models applicable to
various types of flows and ranges of parameters.
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APPENDIX
NUMERICAL PARAMETRIC STUDIES

. In the simulation of a physical event by means of a numerical calculation scheme there are, associated
with the scheme, parameters having no physical analog. As a result, the selection of values for these
parameters must be based on experience with the particular calculation scheme in question and the propriety
of the selection must be checked post-hoc.

The purely numerical parameters of the present method are aAX, the streamwise step size common to both
the mean flow equations and the turbulence equations; AY, the stream-normal step size in the mean flow equa-
tions; AYT, the stream normal step size in the turbulence equations; C@NVER, the convergence criterion for
the mean flow equations; CPNVERT, the convergence criterion for the turbulence equations; YMAX, the upper
boundary of the computational domain; and XMAX, the downstream boundary of the computational domain.

EFFECTS OF X STEP SIZE

The effects of the X step size were examined by applying the present method, using the Wilcox-Rubesin
model, to the flow conditions of the Wieghardt flat plate. These flow conditions were used to isolate the
effects of AX 1in the calculation from the effects of the streamwise definition of the boundary conditions.

Six sets of calculations were carried out with AX ranging from 0.5 85 to 16 §,. Except for the region
of the starting transient near the left-hand boundary, the skin-friction distribution changed by the order of
1% between the smallest and largest X step size.

EFFECTS OF Y STEP SIZE

The discussion of the effects of Y step size is complicated by the fact that a strongly non-uniform
Y-mesh is used. In contrast to the usual finite difference procedure, the accuracy of the present method is
insensitive to the rate of growth of the Y-mesh, but Tike finite difference methods, it is sensitive to both
the size of the largest AY and to the distribution of points in Y.

Three different distributions of Y points and three different Ypin were considered in conjunction
with the Wilcox-Rubesin model and the flow conditions of Samuel and Joubert. The array of Y points finally
selected was distributed, on the basis of the initial velocity profile, as follows.

1. 5 to 6 points for 0 ¢ y* < 10
2. 15 to 16 points for 10 < y* < 200
3. 8 to 10 points for 200 < y* < yfax

The use of additional points in "y" produced results that were indistinguishable to three significant figures;
using only every other point in the above distribution produced a change of Cf at the downstream boundary
of about +6%.

The use of the mean flow mesh cited above in the turbulence egquations, contrary to our expectations,
provides adequate resolution. This was verified by solving the turbulence equation with 2 and 3 times the
point density without significant change in the eddy-viscosity distribution. This is due, at least in part,
to the fact that the eddy viscosity is the ratio of two computed parameters so that small errors of the
same sign in both parameters will tend to compensate.

EFFECT OF CONVERGENCE CRITERIA

Because of the desire for easy interchange of turbulence equations two separate iteration loops with
independent convergence criteria are used. The error in each equation solved is defined as the left-hand
side minus the right-hand side.

We iterate in the inner loop for the turbulence equations until the largest error, for all Y .at any
X, is less than 0.1. At that point the eddy viscosity is sent to the mean flow equations for a single
iteration, and the entire cycle is repeated until the largest error in the mean flow equations is Tess than
0.001. This latter criterion is dominant and the inner loop is required only to prevent poor initial condi-
tions in the turbulence properties from driving the entire solution procedure into large oscillations. For
typical attached flow cases, the 0.001 convergence bound implies converdence in all variables to three
significant figures. If Tess accuracy, and more economy, is required this value may be increased.

EFFECT OF YMAX

The proper choice of the Tocation of the upper computational boundary is substantially more case-
dependent than are the other numerical parameters. In general, one must choose YMAX to be Targe enough so
that oau/dy is small there. The requirement arises from the fact that the velocity along this line is
specified as a boundary condition, and if 3u/3y 1is not small, then ue = ug(X,y) # ue(x) and the solution
varies with YMAX.

For the solutions presented in the body of the paper we required that a 25% increase in YMAX must not
affect the skin-friction coefficient by more than 1%.

EFFECT OF XMAX

For the majority of the cases considered here, boundary-layer-type flows, the solutions show negligible
sensitivity to the downstream boundary location. For a flow with separation, the downstream boundary must
be sufficiently far downstream of reattachment so that the flow has recovered its boundary layer character.
This requirement is imposed by the fact that the boundary conditions at XMAX are the boundary layer equations.
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Table 1. Execution Time on CDC 7600.

Flow conditions and Execution time,

turbulence model MXN CPU-sec

Wieghardt F.P.

Cebeci-Smith 20 x 25 4.45

Glushko 20 x 25 7.55

Jones-Launder 20 x 25 13.39

Wilcox-Rubesin 20 x 25 27.73
Samuel and Joubert

Cebeci-Smith 22 x 31 26.3

Glushko 22 x 31 22.3

Jones-Launder 22 x 31 26.3

Wilcox-Rubesin 22 x 3 29.9
Strickland and Simpson

Cebeci-Smith 15 x 33 19.9

Glushko 15 x 33 14.6

Jones-Launder | 15 x 33 27.5

Wilcox-Rubesin 15 x 33 1.8
Modified Schubauer and

Klebanoff

Cebeci-Smith 29 x 28 69

Glushko 29 x 28 88.9

Jones-Launder 29 x 28 179

Wilcox-Rubesin 29 x 28 -—
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REYNOLDS STRESS CLOSURES - STATUS AND PROSPECTS
by

Brian E. Launder
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Summary

Although conventional single-point closures have allowed the successful calculation of
many types of turbulent shear flow, there has been a steady accumulation of turbulent flow
phenomena that are found to be inadequately simulated by available schemes. Partly arising
from these failures a number of workers have questioned the usefulness of the statistical
approach to turbulence, based upon Reynolds averaging.

The present contribution addresses two themes arising from this situation. The first is
that second-order closures (those based on conventionally averaged momentum equations and a
closed set of Reynolds stress transport equations) appear in principal suitable for the
analysis of the vast majority of furbulent shear flows. In particular it is shown that a
gingle form of the Reynolds stress transport equations has been used to predict shear flows
that appear to be 'dominated" by large scale structures of different types. Examples are: the
“"natural convection" limit in the atmospheric boundary layer, the turbulent boundary layer on a
concave surface and various free turbulent shear flows. In all these cases turbulent mixing
rates are appreciably higher than found, say, in a turbulent shear flow between parallel walls
where large scale structures are not dominant - and in which the Reynolds stresses are also
well described by the same form of rate equation.

The inference drawn is that for many purposes the large scale structures can be regarded
as nature's mechanism for providing enhanced transport rates when these are demanded by the
imposed strain field, force field or boundary conditions. Since the Reynolds stress transport
equations contain the "signal® of influences in the stress generation terms it is reasonable
that the stress levels should respond in accord with observations in the various shear flows.
cited.

The second theme is that, although second order closures as a class thus appear capable of
achieving a wide range of applicability, current schemes contain highly simplistic ideas that
can and must be removed for the closures to achieve the potential of which they are capable.
Perhaps the most serious weakness is the use of just a single time scale to characterize the
rates of progress of all the various turbulence interactions that need approximating. The
writer and his colleagues have devised a more general approach that provides independent time
scales for the large-scale and medium-scale motions. The model is developed and applications
are shown to various shear flows including turbulent boundary layers close to separation. Use
of the multiple time scales brings much improved predictions over an encouragingly wide range
of conditioms.

Introduction

Turbulence, as befits its nature, has inspired vastly different approaches towards bringing it to
order. One that has appeared increasingly attractive to computationalists over the past decade is the
second-order, or - as we shall term it here - the Reynolds-stress closure. For the experimentalist, in
the same period, there has been perhaps even greater interest in the search for and documentation of
embedded orderliness in the turbulence signal - a coherence in structure made visible by appropriate
filtering of or discrimination in the measurements.

These two schools of work - the one computational, the other experimental - have so far had little,
if any, impact on one another. Indeed, the posture of the groups to each other may be said to have been
"stand-offish"”. The Organizing Committee of the present symposium, however, has made at least some
attempt at dialogue by requesting that approaches to "theory and modelling" should either incorporate
modern experimental knowledge of the ["organized"] structure of the turbulent boundary layer or provide
a justification for its omission.

The present contribution is provided as a response to that request. It has been written chiefly for
those who are not practioners in Reynolds stress closures, though, for the turbulence modeller, at least
one new suggestion has been added on how the breadth of current closures may be extended., TFirst we
summarize the basic pattern of Reynolds closures and the reason they look an attractive type of model
for practical shear flow calculations. Here will be discussed, also, the writer's view of the
relationship between the 'organized structures' and Reynolds stress closures. In Section 3, drawing
principally on the work of the writer's group, an outline will be given of fundamental developments that
are being introduced to extend the admittedly modest current reliability of Reynolds stress closures.
Chief of these is the introduction of two or more independent time scales to characterize different
turbulent interactions (other current schemes employ just a single scale). More far reaching, though
still at the conjectural level, is the partitioning of the Reynolds stress field in wave number space
with a different set of transport equations (with their attendant closure hypotheses) for each slice.
Such an approach would dovetail nicely with the sub-grid-scale closures that those with unlimited
computer budgets are now beginning to apply to simple shear flows. It is, however, a too complex
closure level for practically interesting "difficult" flows - at any rate for the next five years or so
until computer speeds and the general availability of powerful computers have advanced to the point
where solving the additional sets of transport equations cease to be a significant deterrent.
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2. Reynolds Stress Closures: Methodology and Potential

2.1 The Exact Stress Transport Equation and Some Inferences from the Generation Term

The 1968 Stanford Conference marked, in all probability, the first occasion at which an audience
concerned with the computation of turbulent boundary layers was encouraged to obtain the unknown
Reynolds stresses, ujug, by solving a set of closed transport equations for the non-zero elements of
the Reynolds-stress tensor [1]. With the exception of Bradshaw [2} (who had determined the turbulent
shear stress from a rate equation for kinetic energy) all those who had applied differential field
methods to the calculation of the various test cases posed by the organizers of the Stanford meeting had
represented the turbulent stresses by way of the relation:

e P
- u,u, —\Jt B +}Tx'_l (1)
4 i

where vy is an effective (scalar) kinematic viscosity and (9Uj/9x3; + 9Ui/dx{) is the mean
strain rate. At the Reynolds—-stress closure level that Donaldson []1] advocated, however, the
correlations between fluctuating velocities would instead be obtained from solutions to the
Reynolds-stress transport equations.

An exact equation for the transport of ujus is easily obtained by multiplying the Navier-Stokes
equations by the fluctuating velocity and time- or ensemble averaging. The resultant expression for a
stationary, quasi-incompressible flow® field in which molecular transport is negligible may be written:
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where p and p' denote respectively the mean density and fluctuations about this mean, gi is the
gravitational acceleration vector and p stands for the fluctuations in pressure. Although gravitational
terms are hardly ever important in aeronautical fluid mechanics they have here been retained partly
because of the well-known analogy between the effects of streamline curvature and buoyancy on turbulence
and partly to illustrate the width of flow phenomena that may already be adequately characterized by a
single set of equations. In words the equation expresses the fact that the rate of increase of Tjuj
of a small fluid package arises from a net excess of direct rates of generation (Pj ij and Gij ) due to
interaction with the mean-strain and gravitational flelds over the combined loss rate due to direct

viscous dissipation (gj ), pressure interactions (‘P and diffusive transport (D wp Although
expressible through tensor notation as a s1ngle equatlon, any use of a closed form of ( requires, of
course, solution of separate transport equations for the individual Reynolds stress elements, Equation
(2), together with a clear, elementary appraisal of some of its implications, has been available in
textbook form for at least 20 years [3]. The equation provides such insight into the character of the

Reynolds stresses that it is hard to understand why such a small proportion of graduate majors in fluid
mechanics have an familiarity with it.

The last three groups of terms in Eq. (2) are not directly knowable. To achieve closure at the
Reynolds—stress level these correlations must be approximated in terms of the Reynolds stresses, the
mean strain field and a characteristic time scale (or scales) of the turbulent interactions. What makes
the Reynolds stress closure level a particularly interesting and effective onme to work at, however, is
that the generation terms in (2) may be regarded as known. Generation agencies form a major term in the
Reynolds stress budget in turbulent boundary layers (except in conditions of turbulence collapse due,
for example, to severe accelerations); thus, one might regard the problem of closure as being hal f-way
dealt with without having to make approximations. One may liken the task of providing a model for the

Reynolds stresses to that of assessing the wealth of an individual, With no knowledge of the
individual's economics, the task is an impossible one. State specifically his income, however, and the
problem of constructing an economic model begins to appear manageable., It remains, of course, to

prescribe a model for his expenditures (the dissipation term), his taxes (the pressure-velocity
interactions) and the checks mailed to his kids at university (diffusion). Our everyday experience
tells us, however, that these other elements in a person's economic budget are strongly linked to the
income itself.

* Density fluctuations are retained only in the gravitational term - the so-called "Boussinesq
approximation'

+ In this description the terms "generation" and '"loss" are used rather freely: the buoyant generation
may be either positive or negative according to whether the stratification is unstable or stable;
the pressure interactions will produce an energy gain in some components and a loss in others (as
may be inferred by noting that the trace of (Pij is zero) while diffusive transport will act to
raise ujuy in some regions and to diminish it in others.
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Let us proceed to some examples which emphasize the extent to which knowledge of the generative
agencies allows at least qualitative inferences to be drawn about how turbulence will react to various
strain and force fields. We start with the case of a plane, parallel flow, Uj(xg) in the absence of
gravitational effects cited by Hinze [3]. 1In this case evaluation of the generation term in Eq. (2) for
each component of normal stress shows that only the streamwise fluctuations (uf) receive energy from
the mean flow (at a rate equal to =- 2 ujupdU;/dxg); the normal stress levels in the plane
perpendicular to the mean velocity owe their sustenance to pressure interactions deflecting energy from
streamwise fluctuations. We may thus reasonably infer that the =xj-direction fluctuations will be
larger than those in any other direction - a circumstance that experiments amply confirm. Lest we
dismiss too lightly the capacity of Eq. (2) for getting such a simple feature of turbulence correct, it
is well to note that Eq. (1), which is still the most widely used stress-strain relation in practical
calculations, gets it lamentably wrong!

Streamline curvature is well known to have marked effects on the development of turbulent boundary
layers. If we orient our axes so that x] points in the mean flow direction, we can regard the
importance of the curvature term to the flow's development as given by (3Us/3x7)/(3U1/3%9).
Bradshaw [4] was among the first to note that small amounts of 3Ug/3x; had a large effect on the
boundary layer growth - indeed, inexplicably large if one's views on turbulent transport are blinkered

by the effective viscosity relation, Eq. (1). The reason for the flow's sensitivity to the small
additional strain due to curvature is, however, immediately apparent from the generation term in Eq.
(2)._ The g_eneration rate of the shear stress uqug by mean strain is
- 8\1% 3U/3%9 + uf 9U9/3%y ). Now, in a boundary layer flow on a flat plate :{ is
typically between two and five times larger than_u$, depending upon the position in the shear flow.
Moreover, in the transport equation for u22 a direct generation due to curvature of
- 2 ujug dUy/9%] now arises and this term further amplifies the increase or decrease of shear
stress brought about by the curvature of the mean streamlines. Indeed the study of Irwin and Arnot

Smith [26] suggests that when direct and indirect effects are all included the flow will be 1§ times
more sensitive to curvature than if turbulence acted purely as an amplified laminar viscosity as Eq. (1)
implies.

Historically, nearly all approaches to calculating buoyancy-affected flows arising in engineering
contexts have employed effective viscosity transport relatioms for the turbulent fluxes of momentum and
heat. Workers have attempted to account for effects of buoyancy on the transport coefficients through
empirical functions whose argument has been the local or averaged Froude, Rayleigh or Richardson
numbers, (dimensionless groups involving ratios of different characteristics of the dynamic and buoyant
fields). When a Reynolds-stress closure is used, however, the direct effects of buoyancy appear emactlz
in the stress transport equations. Now, of course, transport equations for the density-velocity
correlations must be solved as well and these equations, similar in structure to Eq. (2}, will require
closure approximations for the different unknown correlations contained therein. Again, however the
generation terms due to mean strain, mean density gradients and buoyancy can be regarded as known
provided a further equation is provided for the mean square demsity fluctuations*. Figure 1 shows the
extensive interconnections that result among the Reynolds stresses and density fluxes for the case of a
thin shear flow where xj (the flow direction) is horizontal and x9 (the direction of velocity and
density gradient) is vertical. Note first that in the absence of buoyancy, u22 interacts with the mean
strain to sustain the shear stress wujup which, in turn, acts as the source for ui some of whose
energy is deflected via pressure fluctuations to maintain ;22' The vertical density flux, uyp', is
ivotal in the effects of buoyancy on the Reynolds stresses: it provides a direct source or sink in the
-53 equation and acts indirectly on ujuy both through the dependence of this component on u) and
via the horizontal density flux, ujP’. There is direct "talk back" to the vertical density flux from
both 1_1-%— and p'? since these correlations appear in the generation terms of the ugp' equation. The
inference that I suggest be drawn from this is that the interactions among the various components of the
turbulent stresses and demsity fluxes .are too numerous and intricate to hold out any hope of correlating
their effects by adjoining empirical functions to expressions for the effective viscosity. As we shall
see later in the section, however, the equations for the second-rank moments extrapolate well from
neutral flows to account for transport effects under highly stratified situatioms.

2.2 Current Closure Methodology

In the foregoing section we have advanced the view that its exact treatment of the stress-generation
agencies gives the Reynolds stress transport closure decisive potential superiority over any simpler
scheme. While, however, ome can extract a great deal of qualitative information about the character of
a turbulent shear flow from analyzing the generation terms alome, Eq. (2) becomes useful for calculation
purposes only if adequate closure approximations can be made of the unknown correlations appearing
therein. The following paragraphs provide a brief account of current closure practices. More extensive
reviews and more detailed discussion are provided im references [4-9].

For boundary layer flows, the most important of the unknown terms in (2) is the pressure
redistribution term, ®¢;3. Examination of the Poisson equation for p shows that pressure fluctuations
are attributable to three agencies {[9]: purely fluctuating velocity interactioms, ¢i; 1, an additional
effect due to the superposition of a fluctuating velocity field onto a mean-field %éformation, $i: 9
and thirdly, in stratified media, a contribution from perturbations in potential energy, ¢ij 3. ’i‘ﬁe
majority of workers mnow active in Reynolds stress closures devise separate approximations for each of
these effects. For the contribution arising from purely turbulence interactions most workers adopt
Rotta's [10] linear return-to-isotropy model:

* If density fluctuations may be considered to arise purely from temperature fluctuations the
correlations between velocity and temperature fluctuations may be solved instead.

+ The buoyant generation rate in the equation for p'uj is equal to p'2g;/p.
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where k stands for the turbulence kinetic energy, E—f/z and T, is a time scale of the interaction. If,
as is usually the case, Ty is taken as the turnover time of the energy-containing motions, k/e (e being
the local dissipation ra%e of turbulence energy) the optimum value for the coefficient ¢j is about
1.8, There are some indications that c¢; should in fact be an increasing function of the turbulence
anisotropy, Lumley & Newman [11], though for boundary layers this effect is overshadowed by that due to
the wall's proximity, to be discussed below.

Mean strain contributions to 93 seem 1likely to be particularly important for predicting
three—dimensional boundary layers and other flows with complex strain fields. Overall, the most
successful of current models is also one of the simplest:

= - -1
%552 = °2<Pij T Py ‘Sij) 4

The idea expressed by Eq. (4) is that pressure fluctuations will tend to isotropize the shear
production: that is to say a fraction ¢y of the shear stress generation (and the excess of the
normal-stress production over the mean) will be obliterated. Clearly the coefficient c9 must lie
between zero and unity. In isotropic turbulence (ujujy = 2/3 ¢;; k) it is readily demonstrated
that cg = 0.6; this value seems appropriate also for many “shear fliows which is an encouraging result.
Although more elaborate formulations have given better results for a number of test cases these may
sometimes lead to serious errors when applied in complex strain fields. For example, the
quasi-isotropic model of references [6] and [12] predicts that, contrary to experiment, the addition of
swirl to an axisymmetric jet reduces its rate of spread, a deficiency which Launder and Morse [13]
identify with the model for ¢ij,2'

Buoyant effects on (Di' appear, to a first approximation, to be accounted for with a model
identical in form to that suggested for ¢ij,2! i.e.

= _1
%53 °3<Gij 3 ik 61;') (5)

Within the accuracy of current experimental data it appears that c3 can be taken equal to cg.

In dealing with flows along walls one needs, unfortunately, to account for the effects of pressure
reflections from the boundary which diminish the intensity of fluctuations normal to the wall. For a
plane surface the strength of this effect seems to be proportional to the ratio of a local turbulent
length scale to the normal distance from the wall. Specific corrections have been proposed in
references [6] and [8], the latter being better adapted for use with Eq. (4). Some groups, notably
those associated with Donaldson and Mellor, include no account of pressure reflections; instead the
coefficients in their basic closure scheme are tuned specifically to give an adequate account of, say,
the flat plate boundary layer. This approach is justified provided one confines attention solely to
boundary layers on a plane wall, Poor predictions inevitably result, however, if one attempts to
calculate, with a single set of equations, the flow around an airfoil and the wake downstream
therefrom.

Diffusive transport is wusually of relatively small importance in attached boundary layers in

aeronautical applications. There is thus no justification for retaining transport equations for the
third moments as André and his colleagues [l4] do for their simulations of the atmospheric boundary
layer. Some groups have attempted to model the transport by velocity and pressure fluctuations

separately; the most complete studies to date being contributed by Lumley and his co-workers {e.g. Zeman
and Lumley [15]). For unstratified flows, however, the simple form:

u,u,
9 1

- 3k j
Dlj = CS gx—k E ukuﬂ 3X£ (6)

has been found to give generally satisfactory behavior in a variety of free shear flows and boundary
layers when the coefficient cg is taken as 0.22, references [6] and [13].

The dissipation tensor €;j is represented by most workers in terms of the dissipation rate of the
turbulence energy, € by assuming isotropy of the fine scale motion:

e.. =26 ¢ )
ij 3 1]

Recently, however, Lin & Wolfshtein [16] and Mjolsness [17] have queried the basis for this assumptiom.
There does seem to be a good deal of uncertainty as to whether Eq. (7) is justified in the inner region
of the boundary layer, for y' less than 200, say; the question can only be resolved in due course by
definitive experimental data. The matter, while certainly of fundamental imterest, may turn out to be
somewhat academic for computational purposes since working calculation schemes will, unwittingly, have
absorbed effects attributable to departures from local isotropy into their approximation of pressure
interactions.

Equation (7) will be recognized as just one step towards obtaining €ij; a path is still needed for
determining €. The form used by most workers may be writ;ten
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where the turbulence anisotropy is defined as:

A Za., a,. where a, . E(u.u. e S, , k)/k "
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The c¢'s are coefficients to be determined experimentally. Table 1 gives the values recommended by two
groups. We note that Pyi/€ varies across a shear flow in a rather similar way to Aj; the absence of
any effect of anisotropy in the proposal of reference [ 6] is accordingly accompanied by a larger value
of the coefficient cgj than that proposed in reference [15]. The diffusive transport of € has been
approximated in [6] by:

_ 9 [k 9€
DG_ 0.15 F}i Eukuz W)

Authors Ce1 Cez Ce3
Launder, Reece, and 0.72 1.90 0
Rodi [6]
Zeman and Lumley [16 ] 0.47 1.90 3.5

Table 1 ~ Coefficients in the Dissipation Rate Equation

Equation (8) should be regarded as intuitively formulated with coefficients calibrated to give tolerable
agreement with experiment over a number of free and wall flowst.

The form of the equation is too simple to expect it to achieve a very wide degree of applicability.
Recently Pope [18] and Hanjali¢ and Launder [19] have shown that, by including further terms involving
the mean vorticity, the level of € can be made rather sensitive to secondary strains. In the cases
examined by these workers significant improvements were achieved in the calculated development of the
axisymmetric jet = a notoriously difficult flow to predict - and, in reference [19], of several other
flows as well. While these developments are encouraging and suggest that more widely valid forms of the
dissipation rate equation can be devised, the proposed amendments ought for the present to be used with
caution: by making the €-equation highly sensitive to secondary strains there is the risk that a major
improvement for one case may be offset by a serious worsening for some other, as yet uncalculated shear
flow.

2.4 Remarks on the Applicability of Reynolds Stress Closures to Flows with Organized Structures

The above remarks lead us naturally to the question of what degree of universality can ultimately be
expected at the Reynolds-stress level. The question is not one that admits a precise answer - at least,
not yet. Nevertheless a few general observations can perhaps usefully be made. What I should first
like to emphasize is that closure at the Reynolds stress level is a drastic simplification from the
Navier-Stokes equations which actually describe the dynamics of a turbulent flow. It would be
unreasonably optimistic, therefore, to expect to devise a genuinely universal set of equations for
mimi cking the development of the Reynolds stresses. The best one can hope for is to evolve a system of
equations and functions that give a fatrly faithful representation over a moderate range of conditions.
Whether that "moderate" range can be made broad enough to encompass, say, all the stationary thin shear
flows encountered in aeronautics is doubtful, particularly as answers are needed to a higher degree of
precision than in many other branches of engineering.

Having made these intentionally cautionary remarks, however, I wish now to underline the
capabilities of this class of turbulence model for it is my impression that these are generally
underestimated by fluid mechanicists not actually involved in model development. One frequently hears
the view that the turbulent mixing layer, dominated by large-scale, quasi-periodic eddy structures, is
unlikely to be adequately resolved by an analysis based on a purely statistical treatment. Yet, as may
be seen from references [20] and [21], even a model utilizing the Boussinesq effective-viscosity
relation predicts correctly the effect on the spreading rate of varying the velocity ratio of the two

+  Attempts at giving the equation a more elevated status by purporting to model unknown correlations
in the exact equation for € are, in the writer's opinion, well intentioned but misguided considering
that none of these correlations has yet been measured in a turbulent shear flow.
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streams. The same set of empirical constants is used that serves for the calculation of the plane jet
or the development of a boundary layer along a wall. The observed effect of varying Mach number in this
flow is not well accounted for at present but here it may be said that serious consideration of
compressibility effects on the fluctuating velocity field is only just beginning.

Stratification effects are likewise held not to be amenable to conventional turbulence modelling
because, in highly unstable conditions, transport above a horizontal surface appears to be dominated by
long funnels of less dense fluid rising up through gradually descending cooler layers. At the other
extreme strongly stable stratification is sometimes regarded as unsuitable for conventional closures
because the structure decomposes into disturbances, which, though random, exhibit a wave-like
character.

While predictors at the Reynolds-stress closure level should certainly take note of any such
structural changes between one turbulent flow and another, there is no reason to presuppose that the
closure will be unable to describe the statistically averaged properties of each of them. To reiterate,
a Reynolds stress model accounts for generation processes without recourse to closure approximation: no
particular mechanism is postulated or implied. In a sense it is up to Nature to work out what
particular kinds of mechanism it needs to produce just the right amount of tramsport. It appears to be
the case that when large stress generation rates are demanded (referenced with respect to the local
dissipation rate) large-scale coherent structures are especially likely to be present. This is the case
for the plane mixing layer where the mean level of turbulence energy production is some 20% higher than
the dissipation rate; for a horizontal flow under intensely unstable conditions where the principal
input to the turbulence energy is from buoyant generation; and for a turbulent boundary layer developing
along a concave wall where, as seen in Section 2.1, the effects of secondary-strain generation are large
due mainly to the much larger turbulence intensities parallel than normal to the surface.

An impression of the state-of-the—art of Reynolds stress closures may perhaps be conveyed by the
examples presented in figures 2-5. Except as noted the closure approximations are those of the
(simpler) model of Launder, Reece, and Rodi [6], extended for buoyant flows in [8] and [9]. Two
properties of atmospheric turbulence under unstable conditions are shown in figures 2 and 3. 1In figure
2 the calculated variation of the mms vertical velocity fluctuationst (normalized by the friction
velocity) is compared with the measurements of Wyngaard et al. [22]. The calculated levels are about
20% below experiments due apparently to too small measured values of wall shear stress (the same study
reported values of the von Karman conmstant of 0.35 compared with more usually reported values of about
0.41). There 1is excellent correspondence, however, in the trend of the variation with increasing
instability (L denotes the Monin-Oboukhov length scale) including the 1/3-power dependence for values of
(-x3/L) greater than 2.0 implied in the 'natural convection' limit where wind shear is negligible.
The corresponding variation of the vertical heat—flux correlation coefficient is shown in figure 3. For
increasing instability the vertical velocity and density fluctuations become better correlated which is
generally in agreement with reported experimental data; it also conforms with the idea that the
turbulence should exhibit progressively greater coherency with increasing instability.

The atmospheric boundary layer is strongly affected by pressure reflections from the ground. Such
effects are absent, however, in a free shear flow conmsidered for the case of stable stratificiation in
figure 4a. As stability increases (exemplified by an increase of gradient Richardson number, Ri) the
intensity of vertical fluctuations falls substantially with respect to horizontal ones. The calculated
variation reported by Gibson and Launder [8] agrees well with the measurements of Young [23] in a
quasi-homogeneous horizontal free shear flow. Such a damping of vertical fluctuations will generally
have a dramatic effect on the way a shear flow developes. TFigure 4b shows, for example, for a case of a
warm, 2-dimensional jet discharged on the surface of a body of cool, stationary water, how the stable
stratification impairs entrainment of the demser fluid into the shear flow. The calculations, by Gibson
and Launder [24] show a similar rate of damping to the experimental data of Ellison and Turner [25];
evidently when the mean gradient Richardson number across the jet reaches values of about 0.8
entrainmment of new fluid into the jet is essentially cutoff.

Irwin and Arnot Smith [ 26] have made an interesting computational study of the effect of streamline
curvature on the development of wall jets and boundary layers. Since, over most of a wall jet, the mean
velocity decreases with distance from the wall it is the case of ©ONVeX curvature that gives rise to
augmentation in mixing where we expect strong influence of organized structures. Their turbulence model
was based on the more elaborate of the two closures of reference [6] rather than the simpler version
outlined here but we may expect that the latter model would lead to similar results. Figure 5 shows the
computed ratio of the half width (y,) of a wall jet developed around a circular cylinder to the
distance from discharge, x, plotted as function of y /R, R being the cylinder radius. The
experimental data of Fekete [27] and Guitton [28] show a strong increase of normalized half width with
increasing yo/R (corresponding to stronger influences of streamline curvature) a variation that the
computations of Irwin and Armot Smith [26] closely reproduce for values of (y,/R) up to 0.3. (Beyond
this the mathematical simplifications in their finite difference calculations prevent definite
conclusions from being drawn.) We note that if all the secondary strain terms in the model are
suppressed (y,/x) becomes essentially independent of curvature, which firmly identifies the success of
the computations with the sensitivity of the Reynolds stress closure to small secondary strains. It may
be mentioned that the same authors computed the development of Meromey's [29] study of flow in a curved
channel predicting the mean levels of shear stress on the concave and convex surfaces within about 7%.

3. Further Development of Reynolds Stress Closures

In this section an outline is provided of some extensions in the closure schemes discussed in
Section 2 that are either under development or in the planning stages.

+ In conformity with meteorological terminology x3 here denotes the vertical direction.
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Perhaps the most serious defect of the closure approaches discussed in Section 2 is their reliance
on a single turbulence time scale to characterize rate processes in high Reynolds number turbulence.
Because the response mechanisms of the large-scale and small-scale motions are so very different, we
must expect that any tolerably general model would need independently calculated time scales for these
different parts of the spectrum. Preliminary work on developing a scheme of this kind has been
undertaken by Dr. K. Hanjalié, Dr. R. Schiestel and the writer (references [30]-[32]); the present
discussion, which is abridged from reference [32] is based upon two independent (though intricately
coupled) rates of energy transfer across different parts of the energy spectrum as indicated in Figure
6. The quantity ¥i denotes the wave number above which no significant mean-strain production occurs
while K9 is the largest wave number at which viscous dissipation of turbulence energy is unimportant.
Energy leaves the first region (the '"production" region) at a rate €p and enters the high-wave-number
or "dissipation" region at a rate €. Between these two zomes, occupying an intermediate range of wave
numbers is the "transfer'" region, across which we imagine a representative spectral energy transfer rate
to be &f.

The total turbulent energy, k, is assumed to be divided between the production range (kp) and the
transfer range (kp). At high Reynolds numbers there is negligible kinetic energy in the dissipation
range. In a homogeneous flow the levels of kp and ky are controlled by the transport equations:
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where Pp denotes the production rate of turbulence energy by mean shear which, as remarked above, is
assumed to be entirely contained in wave numbers less than K.

The dynamic response of (9) and (10) depends on the levels of the energy transfer rates €p and
€p. The main task is thus to devise a pair of transport equations which adequately characterize the
evolution of these transfer rates. We are guided in this by the "dissipation rate" equation (Eq. (8))
presented in Section 2.

Now, despite its nominal role as a dissipation rate equation, Eq. (8) does not make sense as such;j
for it makes the local rate of change of € dependent on the local mean strain rate and the anisotropy of
the stress field, neither of which, under conditions of local isotropy, can directly affect the
dissipation rate. Several workers have remarked that the subject of (8) should correctly be regarded as
a spectral energy transfer rate associated with large-scale interactions; that is, in terms of our
multiple-time-scale formulation, ep. Accordingly, the initial form chosen for the E€p equation was:

De 2
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where the partitioned energy kp replaces the total energy giving, as characteristic time scale, the
energy turnover time of the large-scale motions.

In choosing the form of the corresponding equation for €q certain basic requirements were
evident. First, the equation should contain both source and sink terms since, in the decay of grid
turbulence, the level of Ep must decrease downstream while, if the turbulence energy is raised, Er
must, in due course, rise as a precursor to an increase in dissipation rate. It would, however, be
contrary to established views of the spectrum to make € respond directly to an applied mean strain.
Now, the factor that is instrumental in raising & is an increase in the energy flow rate from the
production range into the transfer range. Accordingly, being guided by Eq. (11), the form adopted for
the & transport equation is:

De €, €
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In a flow where the turbulence energy generation is suddenly switched off, there is no necessity for
€ (or €) immediately to decrease since E€p does not fall to zero. Thus the energy dissipation rate
now responds only slowly to the applied mean strain. This feature makes the present form better able to
represent rapidly changing turbulence fields than Eq. (8).

Initially it was planned to provide a transport equation for € which, in structure, was similar to
(but simpler than) Eqs. (11) and (12). To keep the mathematical framework as simple as possible,
however, spectral equilibrium between the transfer and the dissipation regions is assumed:

€ =€eq (13)

This assumption can of course be relaxed later.

In making preliminary predictions of variously strained flows, it became clear that the generation
term in (11) did not possess much width of applicability. For example, to reproduce the development of
turbulence in an axisymmetric contraction a coefficient nearly twice as large was needed as for a simple
shear flow. In the former flows energy generation is by irrotational straining. The implication seemed



13-8

to be that this kind of deformation proved more effective in transferring energy across the spectrum
than ‘rotational shears. Such a preferential transfer may be introduced to the mathematical model by the
addition to (5) of the following term containing the mean vorticity:
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where €ppy is the alternating third order tensor. The term vanishes in an irrotational flow and
(apart from the sign of the coefficient) is non-negative in a rotational strain. The coefficient C'Pl
thus needs to be negative to produce higher overall energy transfer rates in an irrotational strain.

It remains to assign the various coefficients in Eqs. (11), (12), and (14). The coefficients in Eq.
(8), the single-scale € equation have usually been set to constant values and the initial impulse is to
do likewise in the multiple-scale model. There are, however, two reasons for not doing so. First,
research on the much more elaborate spectral or "two-point" closures has shown the necessity of letting
the middle range eddies '"talk back" to the larger scales. If both Cyp and Cop are taken as
constants the equation for €p is virtually independent of the medium scale motion since neither kg
nor €7 appear in Eq. (11). Secondly, the adoption of constant coefficients in Eq. (8) was at least
partly due to the absence of a suitable parameter of which to make them arguments. Now that the energy
spectrum is divided into two parts, two parameters are available, kp/ky and Ep/€q. The first
characterizes the shape of the energy spectrum, the second the degree of spectral imbalance. Reference
[32] argues that €p should be independent of €p while €g should in turn not be directly affected
by kp. At present only one term in each of the transfer equations has been allowed to depend on these
energy or transfer-rate ratios; this limitation was imposed to keep the task of optimization within
bounds.

The following is the form for the coefficients, that led to best overall agreement with the test
flows comsidered in [32]:

= € € . = . =
CTl 1.08 P/ T CTZ 1.15 CPl 2.2
k kE
P
t = - . - - —— - P
cPl 1.0 ; CPZ 1.8 0.3 kT / kT.,. 1

The suggested dependence of Cps on kp/ky ensures that the energy transfer rate from the large
scale motion will be larger in a shear flow than in grid turbulence. The influence of (kp/ky) is
more significant than may be supposed for, while Cpy is rarely altered by more than 107 from its
asymptotic value, this is of itself sufficient to change the rate of spread of a jet by some 40%.

A fundamental question in fixing the above coefficients is where the division between the production
and transfer region should be placed. If the partition is moved to too high wave numbers, such a small
proportion of the total energy will be contained in kg that the time for energy to cross the transfer
region will be negligible. In this case €7 = €p and the calculated flow behavior would be
negligibly different from that of a single scale model. If, however, the division is made at too low a
wave number, the assumption of zero energy production in the kg equation becomes untenable. Provided
due recognition is taken of these two limiting constraints, our experience is that the precise
partitioning point does not significantly affect the predictions, provided coefficients have been
appropriately tuned. The above coefficients are chosen so that in turbulence decay behind a grid the
energy is divided equally between the two regions.

In [32] the diffusion terms in both the partitioned energy and transfer-rate equations have been
uniformly represented as:

i

K
D, = 0.22 = P 33) (15)

where ¢ stands for kp, kr, €p, €.

The multiple-time-scale approach outlined above can be used in conjunction with different levels of
closure. When a Reynolds-stress model is adopted the closure discussed in Section 2 may be applied
except that (kp/€p) would replace (k/€) in both the return-to-isotropy and diffusion models, i.e.,
Eqs. (3) and (6), with minor adjustments to the coefficients. Reference [32] presents computations for
a number of free shear flows and boundary layers which exhibit uniformly better agreement with
experiment than with the corresponding single scale model. The potential of the approach is, however,
best illustrated from the calculations of grid turbulence passed through a 4:1 axisymmetric contraction
in cross-sectional area. In the calculations, Eqs. (9), (10), (11) (with (14)) and (12) have been
solved for homogeneous conditions by forward integration, supplying from experiment values of the mean
velocity and Py. In this way the development of the turbulence energies could be calculated without
recourse to any closure relationship between stress and strain. The initial partitioniong of energy
between production and transfer ranges was taken as the equilibrium 1levels for decaying grid
turbulence. The energy levels in figure 7 show that much better agreement with measurements is obtained
with the multiple-scale treatment than with the single-scale € equation of reference [6]. The latter
displays a too weak rise in energy through the contraction and a too slow decay downstream therefrom, in
contrast to the virtually complete agreement shown with the present formulation. The reason for the
differing behaviour may be inferred from the distributions of energy transfer rates in figure 8. The
quantity €p exhibits a sharp rise on entering the contraction due to the action of the source term
containing Py. The dissipation rate of the single-scale scheme does likewise. The inertial transfer
rate, €p, responds only sluggishly to the acceleration and, in fact, does not reach its maximum value
until some distance downstream of the end of the acceleration. This is why, with the multiple-scale
approximation, the calculated enmergy grows more rapidly through the acceleration yet falls off more
steeply once the pressure gradient becomes zero. :
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The multi-scale approach outlined in the preceding paragraphs already shows promise of extending the
width of applicability of Reynolds-stress closures. There is, however, still plenty of scope for model
refinement. Here we mention the currently unpublighed work led by D. Jeandel at the Laboratoire des
Mécanique des Fluides of the ECL, Ecully. His group is evolving, for homogeneous flow, a complete
spectral closure. It is recognized that such a formulation is too elaborate for practical calculationms,
however, so he plans to integrate the spectral equations to some intermediate point in the spectrum
thereby simplifying the calculation to essentially the form of the multi-scale treatment discussed
above. This path may well contribute significantly to improving the modelling of the €p and €p
equations.

A major question that several groups around the world are currently pondering is whether sufficient
information about the tensorial character of turbulence is carried by the Reynolds stresses themselves.
Granted, it is only the Reynolds stresses one needs as an output from one's turbulence model; possibly,
however, there may be decisive advantages to computing some other second-rank tensor that could appear
in the transport equations for the Reynolds stresses. Such a closure would need to carry a dozen or so
turbulent trangport equations and this is an inconveniently large number at present. It Might be a
practical closure level in five years time, however, if one could rely on the computations. It is thus
perhaps not too soon to precipitate a debate on what looks the best way to add a further second-rank
tensor to the equation set. Donaldson and his group, in work which remains for the present
undocumented, have been experimenting with tensorial length scales. At present, however, the length
scales are uniquely linked via an algebraic equation to the Reynolds—stress tensor (thus, like other
Reynolds stress closures, all the tensorial information is carried in the uju;). The different
length scales are wused to provide non-isotropic transport coefficients in modelling diffusive
processes. A different approach has been recommended by Lin and Wolfshtein [16] who outline the form of
a set of equations for a variable proportional to €;:, the viscous dissipation rate of ujuj. Use
of such a system of equations allows the assumption of ldcal isotropy (Eq. (7)) to be abandoned.

The writer's current view is that provision of a set of individual length scale equations may be an
effective way of extending the applicability of Reynolds stress closures. It is, however, chiefly
through its ability to improve the modelling of the pressure-interaction terms (rather than the
stress—diffusion processes) that I believe its potential strength lies; approximation of wall-reflection
effects may especially benefit from such a treatment. The addition of transport equations for the
components of Eij seems, in contrast, an unwarranted step to take at present since, on the one hand,
local isotropy appears an adequate approximation in most high~Reynolds-number, self-sustaining shear
flows and on the other, no experimental data are available on the processes to be approximated.

Concerning the writer's personal explorations in introducing a second second-rank tensor' to the
system of turbulence transport equations, his inclination is to generalize the multi-scale approach
outlined earlier. TImplicit in that closure is the assumption that the Reynolds-stresses of the medium
scale motion are isotropic, i.e., ujujp = 2/3 8;: kp. The wvalidity of this assumption is much
narrower than that of local isotropy and it may turn out to be the main limitation on the multi-scale
scheme. The next degree of elaboration is straightforward, however. 1In place of a single set of
equations for wju; and kg (or kp) one would provide transport equations for Gjugp and
ujujr. The former™ would, in practice, be similar to the current uju; equations except that
spectral transfer terms will replace dissipative ones. The equations for UWjujr could probably be of
fairly simple form since departures of the transfer range from isotropy will be fairly small. For
example, mean-strain- contributions to pressure-interactions might be represented by the isotropic form:
$i5,2 = 0.4 kp (dUi/3xj + 3U;/3x;). One outcome of the closure at this level would be that
it” facilitated a linkage with sub-grid-scale closures, the ujujr being roughly equivalent to the
sub-grid-scale stresses for which current schemes make very rudimentary approximations.

The above paragraphs have provided a few suggestions for how current Reynolds stress cloures may
evolve in the 1980's. No one can be sure at present just what will prove to be the most fruitful line
of attack, One thing that is sure, however, is that progress in computational modelling can only be
made with a strong supporting program of measurements. Moreover, the experimental data that will be
needed are of a different kind from those which most experiments are currently providing.
Experimentalists are naturally sensitive to the suggestion that their role should be (merely) that of
advancing, or diseriminating between, current closure ideas. Nevertheless, stronger interactions than
at present between computationalists and experimentalists are surely desirable.
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Figure 1 - Intercoupling among second-moment equations in density stratified flows.
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Figure 2 - Measured and predicted rms vertical velocity fluctuations under unstable
conditions. Atmospheric-boundary-layer data from Wyngaard et al. [22].
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LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW —
ILLIAC IV CALCULATION

John Kim* and Parviz Moin*
Ames Research Center, NASA, Moffett Field, California 94035, U.S.A.

SUMMARY

The three-dimensional time-dependent equations of motion have been numerically integrated for fully-

developed turbulent channel flow.

The large-scale flow field is obtained directly from the solution of
these equations, and the small-scale field motions are simulated through an eddy viscosity model.

The calcu-

lations are carried out on the ILLIAC IV computer with 64 x 64 x 64 grid points.

The computed flow patterns show that the wall layer consists of coherent structures of 1ow-speed and
high-speed streaks alternating in the spanwise direction.

from the wall.
observed. Very close to the wa]]
the wall, they are due to u"

These structures were absent in the regions away
Hot spots, small localized regions of very large turbulent shear stress, are frequently

these hot spots are associated with u"
<0 and v > 0 (burst).

>0 and v < 0 (sweep); away from

The profiles of the pressure velocity-gradient correla-
tions show a significant transfer of energy from the normal to the spanwise component of turbulent kinetic
energy in the immediate neighborhood of the wall ("the splatting effect").

NOMENCLATURE
The overbar (~) denotes the filtered component and the prime (') denotes subgrid scale (SGS) component.
C, Smagorinsky's constant u" Z U - <u>
6(x - x') fiiter Eneien Uy velocity in the i-direction
hi mesh size in the i-direction ﬁi Fourier transform of ﬁi
ht e Eigl u_ shear velocity = Yt/p
i v .
k wave number = vki2 + Ky2 v velocity in the vertical direction
3 s . W velocity in the spanwise direction
ki wave number in the i-direction
Xy Xj streanwise coordinate
L length of the computational box in the . . L. .
X x-direction X coordinate in the i-direction
L, 1eggth gf the computational box in the x, x' coordinate vector
z-direction =
' ¥, X, coordinate in the direction normal to the walls
3 SGS length scale
. distance to the nearest wall
N number of mesh points in the y-direction "
+ Ywle
p pressure y o
B P, R z, X3 Spanwise coordinate
p - ; + T 3 .
& ik the completely antisymmetric tensor of rank 3
. P o1— R« :
P =5 7 Uy 3 A mean streak spacing
ﬁ Fourier transform of 5 AL mean spacing of the turbulent structures in the
U i-direction
q root-mean-square velocity L ) Ay
Re Reynolds number based on channel half- ! v
width and the centerline velocity . AU
T
A = —
ReT ngno]ds number based.on channel half- v
width and shear velocity £, jth meshpoint in the vertical direction of the
d fransformed (uniform mesh) space
Ri' E ui'u.' + u.‘ﬁi + Gjuil
I I I P density
1 U- Rkké..
S Eola T ——J- strain rate tensor .. R.. ~ K 1]
W Z\oxg Xy Tij il 3
Ty mean wall shear stress
t dimensionless time . .
' At dimensionless time step
U streamwise velocity

*NRC Research Associate
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v kinematic viscosity < > horizontal average (x-z plane)
vy eddy viscosity < >t time average
w;  vorticity in the i-direction Subscripts
w,  vorticity in the x-direction s wall value
1 i=j SGS  subgrid scale
éij = 0 i3 Superscript
n time step

1. INTRODUCTION

The technique of large eddy simulation (LES) is a relatively new method for computing turbulent flows.
The orimary motivation for its undertaking is that the large eddy turbulence structures are clearly flow-
dependent (e.g., jets vs boundary layers) and hence they are difficult if not impossible to model. On the
other hand, there is experimental evidence (e.g., Ref. 1) that small eddies are universal in character, and
consequently much more amenable to general modeling.

In LES, the large-scaie motions are computed directly using three-dimensional time-dependent computa-
tion, and the small-scale motions are modeled. The dynamical equations for the large-scale field are
derived by averaging the navier-Stokes equations over volumes in space that are small compared to the overall
dimensions of the flow field. This averaging is to provide sufficient smoothing of the flow variables, so
they can be represented on a relatively coarse mesh. The resulting equations for the large eddies contain
terms that involve small-scate turbulence. These terms are replaced by models that are to represent the
interaction between the resolved and unresolved (subgrid scale, SGS) field motions.

One of the most extensive applications of LES has been to the problem of decay of homogeneous isotropic
turbulence (see Refs. 2-4). A variety of numerical methods and subgrid-scale turbulence models was incorpo-
rated to compute this flow. Both the pressure-velocity and the vorticity-stream function formulations of
the dynamical equations were used. These studies have shown that homogeneous turbulent flows can be reason-~
ably simulated using simple eddy-viscosity models.

The first application of LES was made by Deardorff (Ref. 5), who simulated a fully developed turbulent
channel flow at a very large Reynolds number. Utilizing a modest number of grid points (6,720), he showed
that three-dimensional numerical simulation of turbulence (at least for simple flows) is feasible. His
calculations predicted some of the features of turbulent channel flow with reasonable success and demon-
strated the potential of LES for prediction and analysis of turbulent flows.

Schumann (Ref. 6) has also performed numerical simulation of turbulent channel flow. In addition, he
has applied LES to cylindrical geometries (annuli). He used up to 10 times more grid points than Deardorff
and a much more complex subgrid-scale model. In that model, an additional equation for SGS turbulent kinetic
energy was integrated. However, the results showed no significant improvement over the case in which eddy-
viscosity models were used (Ref. 6).

In the calculations of channel flow described above, no attempt was made to compute the flow in the
vicinity of the walls. A great portion of turbulent kinetic energy production takes place in this region
(see Ref. 7). Therefore, by using artificial velocity boundary conditions well beyond the viscous sublayer
and buffer layer, a significant fraction of the dynamics of turbulence in the entire flow was effectively
modeled. In addition, it should be noted that the boundary conditions used in the Tatter caiculations
assume that in theg Tog layer, the velocity fluctuations are in phase with the wall shear stress fluctuations.
This assumption is not supported by experimental measurements (Ref. 8),

Moin et al. (Ref. 9) simulated the channel flow, including the viscous region near the wall. The exact
no-slip boundary conditions were used at the walls. In their computations, only 16 uniformly spaced grid
points were used in each of the streamwise {x) and spanwise (z) directions and 65 nonuniformly spaced mesh
points were used in the y-direction. The grid resolution was especially inadequate in the z-direction to
resolve the now well-known streaky structures in the vicinity of the wall. In spite of this, computations
did display some of the well-established features of the wall region. In particular, the results showed
coherent structures of low-speed and high-speed fluid alternating in the viscous region near the wall, though
not at their proper scale. The overall agreement of the computed mean-velocity profile and turbulent statis-
tics with experimental data was satisfactory.

Encouraged by the results of the above coarse calculation, the present numerical simulation of channel
flow with 262,144 grid points (64 x 64 x 64) was undertaken. The ILLIAC IV computer, a parallel processor,
was chosen for this purpose. Although the grid resolution in the spanwise direction is still not sufficient
for an adequate representation of the wall-Tayer streaks, it is a significant improvement over the earlier
calculation. This, in turn, allows a more realistic and comprehensive study of the structure and mechanics
of this flow.

This paper is the result of a work that is now in progress and is essentially intended to demonstrate
some of the capabilities of LES in the prediction and analyses of wall-bounded turbulent shear flows. In
Sec. 2, the dynamical equations for large-scale field motions are derived. The subgrid model that was used
is described in Sec. 3; Section 4 describes the computational grid network and its relation to the observed
physical length scales in the flow. The numerical method is briefly outlined in Sec. 5; the data management
process is taken up in Sec. 6; and in Sec. 7, we examine some aspects of the mechanics and structure of the
flow, both in the vicinity of the wall and in regions away from the wall, and an attempt is made to correlate
numerical results with laboratory observations. In Sec. 8, we present the computed flow statistics, which
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include the mean-velocity profile, turbulent intensities, and turbulence shear stress. In that section, we
will point out some of the deficiencies of the subgrid-scale model used and suggest improvements. Finally,
conclusions are presented in Sec. 9.

2. GOVERNING EQUATIONS FOR THE LARGE-SCALE FIELD

{he first step in LES is the definition of the large-scale field. Each flow variable f 1is decomposed
as follows:

f=f+f (1)

Here, the overbar denotes the large-scale or "filtered" field and the prime indicates the residual or "sub-
grid" field. Following Leonard (Ref. 10) we define the large-scale field as:

?u)=£egﬁwﬂgmw (2)

where G is the filter function and the integral is extended over the whole flow field. In the horizontal
planes (x-z}, several possible choices for the filter function are available. Unless otherwise stated, most
of the calculations reported here were carried out using a Gaussian filter, G(x-x',z-z'). The width of the
Gaussian function characterizes the smallest scales of motion retained in the filtered field (the largest
scales in the residual field). We assume that the filtering in the planes parallel to the walls provides
sufficient smoothing in the vertical directions as well; our computations support this assumption. In addi-
tion, it should be noted that we use second-order finite difference schemes to approximate partial derivatives
in the xy-direction and such schemes have an implicit filtering effect associated with them. For further
details see Moin et al. (Ref. 9).

After applying the filtering operation (Eq. (2)) to the incompressible Navier-Stokes and the continuity
equations, the governing equations for the filtered field may be written

au, _ 32U,
1. G = . 8p¥ R - 1
57 Sigk Y% T T ex. %41 T ax, Tig T ReD axoaxs (3)
1 J T J J
e
i
where we have decomposed u; as in (1) and
au
" € -1
k pgk ax
p
e RS
Taos ..-——i
1 1j 3
T i e = I
Rij . ui uj + uj ui + ujui
p*=ﬁ+laj.+5$=ﬁ+laj
p 2753 3 2737

Here, the variables are nondimensional using the channel half-width & and the shear velocity u; = va/p.
The calculations will be carried out for a fixed streamwise mean-pressure gradient which is accounted for
by the &4y, term in the momentum Eq. (3).

3. RESIDUAL STRESS MODEL
The remaining unknown quantity in Eq. (3) is 43+ This term represents the subgrid-scale stresses and
must be modeled. In the present calculations we have used an eddy viscosity model,

i T -2stij (5a)

1 Bai EITH
S5°7 (’c‘xj+§1l) (5b)

The small-scale eddy viscosity vy represents the action of the unresolved scales of motion on the
resolved scales. Hence, as the resolution gets better, vy should get smaller. This suggests that v
should scale on a length scale & which is directly related to the computational resolution. The model
most commonly used for v and the one we use here js the Smagorinsky model,

v = (G025 5 (6)

where

n

where Cg = 0.1 (Ref. 5) is a dimensionless constant and £ is a dimensionless representative of the grid
resolution, here assumed to be (Ref. 5):

g = (hy » ha(y) » h3)/3 (7)
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This expression for. & is probably appropriate only for cases in which there is no significant grid
anisotropy (Ref. 6). In the present calculation, the computational grid is very elongated (hj,h; >> hy) in
the vicinity of the walls, and hence use of Eq. (7) is not strictly Jjustified. However, to gain a better
insight into the role of 2 and to help guide its selection in future calculations, we have used Eq. (7)
with a modification described below.

Near the walls, the subgrid-scale turbulence Reynolds number, defined as

q 2
_ 'SGS
Regs == v — (8)
is very small, and hence one expects the value of the eddy viscosity coefficient to be very small. In our
calculations, we have found that the damping provided by the presence of (h,(y))!/3 in Eq. (7) is not suffi-
cient, and excessively large subgrid-scale stresses are formed near the wall. Therefore, in+the present
calculations we have multiplied & (Eq. (7)) by an exponential damping function 1 - exp(-y /50).

The eddy-viscosity model used here is best rationalized for isotropic turbulence at the scale of the
computational grid. The fundamental assumption behind this model is that the resolution scale lies within
an inertial range with the -5/3 power spectrum (Ref. 11). It is clear that for the moderate Reynolds number
(Rer = 640) that we are considering and the nature of the grid volumes used, the above assumptions are not
satisfied. This is particularly true in the highly viscous region in the vicinity of the walls. Thus, the
present simulation is viewed as a challenge to the eddy-viscosity model used.

A critical test for the large eddy simulation technique is the prediction of the logarithmic layer
and the von Karman "constant." This is one of the reasons for not utilizing the mixing-length model in the
present calculations to account for inhomogeneity due to the mean shear (Ref. 6). Such a model is known to
"postdict” the correct mean-velocity profile.

4. THE COMPUTATIONAL GRID

The availability of computer resources restricts the size of calculations possible. For a given number
of grid points N, we have to choose the grid size(s) based on the known physical properties of turbulent
channel flow under consideration.

In the vertical direction (-1 <y < 1), a nonuniform grid spacing is used. The following transformation
gives the location of grid points in the vertical direction (Ref. 9):

=1 -1
Yi* 3 tanh [sj tanh~1(a)] (9)
where
g =1+ 2(3-1)/(N-2) (10)
J=1,2, . . .4 N

N is the total number of grid points in the y direction, and the adjustable parameter of transformation is a
(0 <a<1). Weused a = 0.98346, N = 64. This value of a was selected so that the above grid distribu-
tion in the y-direction is sufficient to resolve the viscous sublayer (y* < 5).

The length Ly and Lz of the computational box in the streamwise (x) and spanwise (z) direction, in
which periodic boundary conditions are used, should be Tong enough to include the important large eddies
(Refs. 6, 12). Based on the two-point correlation measurements of Comte-Bellot (Ref. 13), we used Lx = 2w,
and Lz = 4n/3. We have used 64 uniformly spaced grid points in each of the streamwise and spanwise direc-
tions. With the above choices for Ly and Lz, the nondimensional grid spacings in the horizontal directions
expressed in the wall units are:

hl = 63
ha = 42

In the wall region, the important large eddies are the "streaks" (Ref. 14). These have a mean spanwise
spacing corresponding to A3* = 100. It is clear that our grid resolution in the spanwise direction is not
quite sufficient to resolve the streaks. This is especially true when we note that the above value for A%
is based on an ensemble of measurements, and at a given instant streaks with a finer spacing than izt can
be formed. As we shall see, however, calculations did reveal these structures, though not at their proper
scale.

With relatively minor modifications to the present computer program, we are able to perform calculations
with 64 x 64 x 128 grid points in the x, y, and z directions, respectively. It is expected that in this
simulation the spacing of the wall-layer streaks will be more in Tine with the Taboratory observations.

5. NUMERICAL METHOD

A complete description of the numerical method used is given in Ref. 15. Here, we give a brief outline
of the method and minor modifications that were made to enhance the data management process. The partial
derivatives in the x, direction were approximated by second-order central difference formulae. In the
X, and x5 directions, partial derivatives were evaluated pseudospectrally (Ref. 16). With a given number of
grid points, the use of the pseudospectral method in any given direction gives us the best possible resolution
&? tha% direction. This is particularly useful in the x3 direction where we face a lack of grid resolution

ec. 4).
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Time advancement is made using a semi-implicit method. Pressure, viscous terms, and part of the subgrid-
scale model are treated implicitly, whereas explicit time advancement is used for the remaining nonlinear
terms. The equation of continuity is solved directly. Second-order Adams Bashforth (Ref. 17) and
Crank-Nicolson (Ref. 18) methods are used for explicit and implicit time advancement, respectively.

Next, we Fourier transform the resulting equations in x; and xs directions. This converts the above
set of partial differential equations to the following set ot ordinary differential equations for the variables
at time step n + 1, for every pair of Fourier wave-numbers k; and k3, with y = x, as the independent
variable.

z)2,.n+1
n+ ikl A
— 4 (g - K+ ks B = 0 (11a)
ay
3202+1 " N+l ap
A At 3 =
- + (g, - K2)ATH + g, 7?'—E3y— Q2 (11b)
3y
A0+l
2203 . "
> + (Bg - k2)”n+1 + ik3B4 %; pn+1 S an (11c)
oy
antt 0" an+l
1k1 3y + 1k3U3 =0 (]1d)

Here, 8j (i = 1,2,3) are known functions of Re; and <®Tn> and G;" represent the terms involving the
velocity and pressure field at time-step n and n - 1 (see Ref. %

In addition to the use of implicit time advancement for all the viscous terms, the algorithm used in the
present study is different in one other respect from the one described in Ref. 15. For reasons that will be
explained in the next section, Eqs. (11a) and (11c) were multiplied by ik; and iks, respectively. Thus,
the dependent variables for the time-advancement equations are ik,U, V, and iksw rather than U, V, and w.

The remaining steps in the solution procedure are as follows. Finite difference operators (described
above) are used to approximate 3/3y and 32/3y2. This gives a set of linear algebraic equations for the
Fourier transform of dependent variables. This system is of block tridiagonal form and can be solved very
efficiently. No- s]1p boundary conditions are used at the solid boundaries. Finally, inversion of the
Fourier transform gives the velocity and pressure field at time-step n + 1.

The initial velocity field was the same as the one used in Ref. 9 interpolated on the finer grid used
here.

6. DATA MANAGEMENT

In Targe simulations, the high-speed random-access memory of the computer on hand may not hold the
entire data base of the problem being considered. In the present case, the core memory of the ILLIAC IV is
large enough to hold only a few planes of velocity pressure field. Therefore, it is essential to manage the
flow of data efficiently between the core memory and the disk memory where the entire data base resides. In
general, separate passes over the data base are required for each time step and the task is to minimize the
required number of such passes. The following describes a data management process employed in the present
simulation.

The system of Eq. (11) must be solved for both real and imaginary parts of the dependent variables.
This necessar11y means that two passes through the data base are required: one for real parts of U and U3
and imaginary parts of U, and p, and the other for imaginary parts of (i; and (s and real parts of 0, and p.

To avoid an extra pass through the data base, we multiply Egs. (11a) and (11c) by 1ik; and iks, respec-
tively (Ref. 19). (These multiplications in Fourier space amount to differentiations in real space.)

326?+1 e o, Atantl _ =
ay? * (e - K2NTT - ki?e R = (122
B:GE+1 + (B, - K2)ITH + 82%;'3%%;1 - Q" (120)
Y
a:d§+l & (83 - K2)IT - ko284 %;§n+1 - gy (12¢)
Y
s 3212:-” L SR (12d)

where G, = ikylys Uy = Ups Ug = ikslss Q1" = ikiGy"s Q" = Q2”5 and Q5" = iksQs". The above system of
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equations can be solved with one pass through the data base, but two extra integrations in the Fourier space
are required to obtain u, and uz 1in physical space. It should be noted, however, that such integrations cost
far Tess than an I/0 pass. In addition, to avoid the Toss of information, upon differentiation, the Fourier
mode associated with a null wave number is simply not multiplied by its wave number (i.e., zero) and,
similarly, it is not divided by its wave number upon integration. This implies that U, Uy, and Uy in

Eqs. 12 should be understood as

al(o,.y,k:i); 1klﬁl(k1,.y,k3),k1 # 0
az(kls.Ysk:s)
g (k15y50)5 ikzig(ky,y.ks).ks # 0

The system of Eqs. (12) is_solved by two separate passes through the data base. In PASS 1, the right-
hand sides of these equations, Q4 (i = 1,2,3), are evaluated and in PASS 2, the block tridiagonal system is
solved. To compute the right-hand side vector in PASS 1, differentiations in all spatial directions are
required. Since the pseudospectral method is used in the horizontal directions (x and z) and a finite-
difference scheme is used in the normal direction (central difference), all the data in an (x - z) plane are
needed for operators in these directions and the data for at least three adjacent planes are needed for finite
difference operators in the y direction. Therefore, in PASS 1, two (x - z) planes are brought into -the core
to be handled by a double buffer scheme. One complete pass through the data base is required to complete
PASS 1.

In PASS 2, the block tridiagonal system must be solved for each k; and kz. In this pass, two (y - kj)
planes are brought into the core. A special algorithm had to be developed to solve the block tridiagonal
matrix because of the limitation on the core size. 1In a conventional-block tridiagonal solver, all the
results of forward sweep are stored to be used in backward sweep. For the present simulation, this would
require half of the total core size (i.e., 16 x 64 x 64) which is not feasible. Hence, a special algorithm
was developed so that only a part of the results of the forward sweep is stored in the memory and the rest is
recomputed as necessary in the backward swéep. Although this requires extra computations in the backward
sweep, this method is much more efficient than performing the extra I/0 passes that would otherwise have
been necessary.

The computation described here was carried out on the ILLIAC IV computer at Ames Research Center. The
dimensionless time step, during most of the calculations, was set at At = 0.001. The computer time per
time-step (CPU and I/0 time) was about 22 sec. This computational speed has been achieved with a full use
of the parallel processing capabilities of the ILLIAC IV and the data management process just described.

7. DETAILED FLOW STRUCTURES

In this section, we investigate the detailed flow patterns by examining contour plots of typical
instantaneous velocity and vorticity fields in x-z, x-y, and y-z planes. In all these plots positive
values are contoured by solid lines and negative values are contoured by dashed lines. In addition, all
the plots are obtained at a given dimensionless time (t = 1.4).

Figure 1 shows patterns of u" 1in an x-z plane very close to the Tower wall (y+ = 16.1). The striking
feature of this figure is the existence of highly elongated (in the x-direction) regions of high-speed
fluid Tocated adjacent to low-speed ones. This picture of the flow pattern in the vicinity of the wall is
in agreement with experimental observations (Refs. 20, 21) that the wall Tayer consists of relatively coherent
structures of Tow-speed and high-speed streaks alternating in the spanwise direction. Examination of the
typical spanwise spacing of these structures shows significant improvement over the earlier simulation
(Ref. 9) where only 16 uniform grid points were used in each of the spanwise and streamwise directions. How-
ever, the typical spacing of these streaks is still about 3 times larger than the experimentally observed
mean value of a3t = 100. This is expected, since our computational grid size in the spanwise direction is

too large to resolve the wall Tayer streaks in their proper scale (Sec. 4).

Figure 2 shows patterns of U" 1in an x-z plane far away from the wall (y/§ = 0.73). Tt is clear
that the U patterns in the regions away from the wall do not show the coherent streaky structures that are
characteristic of wall-layer turbulence. This is also in agreement with the experimental observations
(Ref. 20). In fact, it is difficult to associate a definite structural pattern to U 1in the regions away
from the wall.

Since turbulent energy production is directly proportional to -<uy>t, it is important to study the
instantaneous map of §"y. Figure 3 shows the patterns of u"v in the same x-z plane as in Fig. 1;
that is, very close to the wall {y* = 16.1). Examination of this figure reveals several points related to
the dynamics of wall-layer turbulence that deserve attention. First, it can be seen that the regions with
negative U"v, which have a positive contribution to the production of average turbulent kinetic energy,
constitute the overwhelming majority of the entire plane. Second, pronounced streamwise elongation, the
characteristic of the wall layer 0" eddies, is absent in u"v patterns. This indicates that in contrast
to 0" eddies, v eddies are not significantly elongated in the x-direction. Third, there are several
small regions {hot spots), that are associated with very large values (large concentrations of dashed 1ines)
of -0"Vv. These regions are highly localized in space. Overlaying Fig. 3 on Fig. 1 reveals that the great
majority of the "hot spots” are associated with u" > 0 (hence, v < 0). Thus, it appears that in the close
vicinity of the wall most of the regions with very large values of (-u"V) are associated with high-speed
fluid approaching the wall (sweeps) rather than low-speed fluid being ejected from the wall (bursts). With
combined visual and hot-wire measurements, Falco (Ref. 22) has identified a new flow module in the vicinity
of the wall. These relatively small but energetic structures (called pockets) appear to be footprints of
high-speed fluid moving toward the wall. It is possible that the hot spots identified here may be related

*The original concept was suggested to us by Marshall Merriam, Ames Research Center.
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to pockets. Figure 4 shows the contour plots of u"v in the x-z plane located at y = 90. Examination
of this figure and the corresponding u plot (not shown here) shows that in contrast to the near- -wall
reg1on most of the hot spots that can be identified in this plane are associated with u" < 0 and v > 0,
that is, with bursts. With quadrant ana]ys1s of uv, Brodkey et al. (Ref 23) have found that most of the
contribution to -<uv>t in the wall region comes from sweeps, and that in the regions away from the wall it
comes from ejections. This is consistent with what is observed here in relation to Figs. 3 and 4. There
are two other features in Fig. 4 that deserve attention. First, similar to Fig. 1, the regions with negative
u"v const]tgte the overwhelming majority of the entire plane. Although there are reg1ons with very 1arge
positive u v, they are highly localized in space. Second, the maximum value of (- "v) in this plane is
17.81. This is about 20 times the expected <-uv>t at this plane. Such large excursions of u"v from its
expected mean value have been a frequent observation in the laboratory (e.g., see Ref. 24).

Figure 5 shows contour plots of u"v in an x-z plane far away from the Tower wall (y/s = 0. 73) In
contrast to planes located close to the Tower wall (Figs. 3, 4), where the regions with negative_ "u 'V domi-
nated the ent1re planes, a significant portion of this plane is associated with large positive uv as well

as negative u"v. The regions with the largest positive u"v are associated with high-speed fluid moving
toward the upper wall, and the regions with the largest -u"v seem to be evenly distributed among high-speed
fluid moving toward the lower wall or low-speed fluid moving away from the lower wall. Finally, examination
of the u"v patterns in the midplane (not shown here) reveals that in contrast to the plane just described
(y/s = 0.73), the regions with the largest u'v are_ assoc1ated with bursts originating in the upper half of
the channel, whereas the regions with the largest -u"V correspond to bursts originating in the lower half

of the channe1

Among the conceptual models of the inner region of turbulent boundary layers is the streamwise vorticity
model. This model portrays the inner region as being composed of pairs of long counter-rotating streamwise
vortices located adjacent to each other. These long vortical structures, in turn, create low-speed and high-
speed streaks a1ternat1ng in the spanw1se direction. Figure 6 shows the streamwise vorticity patterns in
the same x-z plane as in Fig. 1 (y* = 16). These patterns do not show elongated regions of positive and
negative wy alternating in the spanwise direction. Moreover, no definite relationship appears to exist
between the streak patterns shown in Fig. 1 and &y patterns shown in Fig. 6. Therefore, the present simu-
lation tends to dispute the validity of the vorticity model.

Figures 7 and 8 show patterns of u" and @, 1in an x-y plane, z = 15h3. For clarity, we have expanded
the region 0 < y/§ <0.5. A pronounced feature of Fig. 7 is the two regions of high-speed fluid (with res-
pect to the local mean velocity) that are inclined at oblique angles with respect to the wall. These struc-
tures are apparently associated with intense shear layers that are also inclined with respect to the wall
(Fig. 8). Similar large-scale structures have also been observed in the laboratory. From measurements of
space-time correlation of wall shear stress and velocity fluctuations in a turbulent duct flow, Rajagopalon
and Antonia (Ref. 8) have identified large-scale structures that are inclined at a mean angle of about 13°
to the wall. At this time, we have not scanned a sufficient number of x-y planes at widely spaced times
to obtain the mean inclination angle of these structures.

In Figs. 9 through 14, contour p1ots of the velocities and the streamwise vorticity in a y-z plane
(x = 0) are shown. The contour plots in this plane reveal the existence of surprisingly we11 -organized
structures in the wall region. Figure 9 shows a contour plot of the streamwise velocity u". Note that the
figure is stretched 4 times in the vertical direction and that the contour 1line patterns are thus distorted
in that direction. Two important features can be observed in this figure. First, away from the wall — for
example, y/8 > 0.4 — no definite structure is discernible. Near the wall, however, an alternating array of
low-speed and high-speed fluid is noticeable. This array has a long streaky structure in the streamwise
direction, as was shown in Fig. 1. Second, as we approach the wall, the size of the eddies decreases
gradually. Figure 10 is a magnified version of Fig. 9 close to the wall, 0 < y* < 46. Again, the figure is
highly stretched in the y direction so that the shapes of the flow structures are distorted. The array of
low-speed and high-speed fluid is clearly discernible in this figure. This strikingly well-organized flow
structure in the wall region is consistent with the previous experimental observations (Ref. 20j), although
the typical spacing between the streaks is not correct because of the insufficient spanwise grid spacings
mentioned earlier. In addition to the well-organized structure in the wall region, there exists a very
intense shear layer in the vertical plane where the 1ow-speed and high-speed fluids come close together.
This could cause free-shear-layer-type instabilities in this plane; such instabilities might be related to
the experimental observations that the 1ifted streaks oscillate not only in the vertical direction but also
in the horizontal planes.

F1gure 11 shows a contour plot of the normal ve10c1ty Vv in the same plane as in Fig. 10. Here, a
positive ¥ (the solid lines) represents fluid moving away from the wall, and a negative V (the dashed
Tines) represents fluid moving toward the wall. In this figure we notice an array of fluid moving away.and
toward the wall. If we align Fig. 10 with Fig. 11, we notice that, generally, there exists a negat1ve corre-
lation between U" and v. Note that in the v1c1n1ty of the wall, the low-speed fluid elements (" + 0) are
generally being ejected away from the wall (v > 0), while high- speed fluid elements are moving toward the
wall. Clearly, the fluid motions just described have a positive contribution to the production of averaged
turbulent kinetic energy.

Figure 12 shows a contour plot of the_spanwise velocity w. A positive w (solid Tines) represents

fluid moving to the right and a negat1ve w (dashed 11ne) represents fluid moving to the Teft. Note also
that a significantly large spanwise velocity grad1ent in y — that is, sw/ay — exists due to the no-slip
boundary conditions at the wall. This results in substantial streamwise vorticity near the wall, although
flow is not actually revolving in this region. We will come back to this Tater. If we now align the con-
tour plot of W with that of Vv, we can 1dent1fy a definite flow pattern that exists in the wall region.
A schematic illustration of this flow pattern is given in Fig. 15. This simplified illustration shows how
low-speed streaks are being formed and 1ifted away from the wall. It is interesting to note that the rota-
tion of the streamwise vorticity is in the opposite direction to the conventional vorticity model (Ref. 25)
(see also Fig. 15b).
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Figure 13 shows a contour plot of @y in the y-z plane at x = 0. It can be seen that @y is
concentrated only in the wall region. Away from the wall, the strength of the vorticity becomes very weak
and no orgdanized structure is discernible. Near the wall, highly localized concentrations of @y appear,
sometimes in pairs of opposite sign. Figure 14 is a close-up of the wall region for y* < 46. Again, the
figure is highly stretched in_the vertical direction so that the patterns are distorted. By comparing these
contour plots with those of v and w, we can distinguish the streamwise vorticity associated with the revolv-
ing fluid motion from the one associated with the velocity gradients. Recall that the existence of wy does
not guarantee large-scale revolving fluid motion. In fact, most @y very close to the wall, say y*. 10,
is due to aw/sy and is not related to the revolving motion. Some of wyx away from the wall, however, (e.g.,
the one in the center in Fig. 14) is associated with a large-scale revolving motion. This is in agreement
with the experimental observations by flow visualization techniques (Ref. 7? where strong revolving motions
are observed away from the wall (y* > 10) and not very close to it. It should also be noted that although
the strong vortical revolving fluid motion appears outside the sublayer, in the present simulation, the root-
mean-square value of Wy, <ox2>1/2 always attains its maximum at the wall [note that ax}wa11 = (ow/ay)|wall].

8. MEAN VELOCITY PROFILE AND TURBULENCE STATISTICS

Figure 16 shows the mean-velocity profile <u> that has developed after two dimensionless time units.
(One nondimensional time unit corresponds approximately to the time in which a particle moving with center-
Tine velocity travels 22s.) Note that in the present study horizontal-average values are approximately
ergodic. The calculated velocity profile shows a distinct logarithmic region over an appreciable portion of
the channel width. For comparison, we have also included some of the available experimental data in this
figure. The agreement of the computed mean-velocity profile with experimental data in most of the channel
is satisfactory. In the vicinity of the wall, however, the values of the computed mean-velocity profile are
rather low. This is due to the presence of an excessively large eddy viscosity coefficient near the wall.
To verify this observation, we carried out a set of calculations (starting from t = 1.0) where instead of
the eddy viscosity model, we used a subgrid scale model similar to the one used by Fornberg (Ref. 26,
in our numerical experiment, small-scale turbulence is removed by a sharp cutoff filter at each time step).
Although this model 1is rather inadequate for proper representation of the interaction between the subgrid-
scale and resolvable scale motions, it suffices for our present purpose, especially if the total time of
integration is not large. Figure 17 shows the resulting <u> profile at t = 1.5. It is clear that the
profile of <u> has attained the proper values in the vicinity of the wall. In addition, the logarithmic
layer is once again evident. Figure 18 shows the profiles of resolvable normal turbulent intensities,
<i"2>1/2 ) 25172 and <w2>1/2 at the same time as in Fig. 16. It can be seen that in agreement with
experimental measurements, generally, <i"2>1/2 > «§2-1/2 > <y251/2  throughout the channel. In addition,
<u"2>1/2 and <w2>1/2  attain their maximum values near the wall. Figure 19 shows the profile of the resolv-
able turbulent shear stress, <uv>. It can be seen that in the regions away from the walls the profile of
<uv> does not follow the theoretical line. This indicates that the statistically stationary state has not
been reached completely. Note that near the wall viscous stresses are important, and the total shear stress
must balance the gross pressure gradient. Moreover, in the present calculations, the subgrid-scale shear
stresses are significant only very near the wall (y* < 10). In Fig. 20, profiles of the intensities are com-
pared with some of the available experimental data in the vicinity of the wall. The agreement of the computed
<u"2>1/2 and <w?>1/2 with the data is satisfactory. However, as was also the case in Ref. 9, near the wall,
a significant portion of <v2>1/2 seems to reside in subgrid-scale motions. This is consistent with our
previous observation that V1 is still excessively large near the walls.

_Figure 21 shows_the resolvable portions of the pressure velocity-gradient correlations, <p(su/ax)>,
<p(av/ay)>, and <p(aw/az)> 1in the vicinity of the wall (y*¥ < 100, t = 2.0). These terms are responsible for
the exchange of energy between the three components of resolvable turbulence kinetic energy; they are of
particular interest to turbulence modelers. Examination of these profiles reveals that except in the imme-
diate neighborhood of the wall (y* < 20), as expected, energy is transferred from <u"2> to <v2> and <w?>;
that is, <p(au/ox)> < 0, and <p(av/ay)>, <p(ew/az)> > 0. On the other hand, as we approach the wall, a sig-
nificantly different behavior can be noticed. Specifically, there is a relatively large rate of energy
transfer from <v2>, whereas there is a large energy transfer to <w?>. This rather unexpected result is
consistent nonetheless with our previous discussions of the fluid motions very close to the wall (Sec. 7).
For example, Fig. 15a shows high-speed fluid approaching the wall and spreading laterally, resulting in
relatively large energy transfer from <v2> to <w2>. On the other hand, the momentum transfer from the
lateral to the normal directions, which results in ejection of fluid elements away from the wall, involves
the nonenergetic_(slow moving) fluid in the immediate neighborhood of the wall. Thus, there is a net energy
transfer from <v2> to <w2>, as shown in Fig. 21.

It should be mentioned that, in general, the values of the pressure velocity-gradient correlations
computed in the present study are significantly higher than the earlier results using a much coarser grid
(Ref. 9). This may indicate that a substantial portion of the pressure-strain correlation is due to small-
to-medjum turbulence scales. To confirm this observation, several computations were carried out with differ-
ent filter widths. The results of the calculations tend to support this observation. Thus, at present,
and in the absence of a better subgrid-scale turbulence theory, the computed pressure-strain correlations
should be interpreted qualitatively. It should be mentioned, however, that the large-scale flow structures
presented in the previous section are rather insensitive (qualitatively) to the different filter widths and
subgrid-scale models used.

Before concluding this section, we turn our attention again to the subgrid-scale model used in the
present study. To better resolve the relatively small turbulence scales in the vicinity of the walls, the
present calculations were carried out for the case of a relatively low Reynolds number turbulent channel
flow (Re, = 640, Re = 13,800). Therefore, the subgrid-scale turbulence Reynolds number defined in Sec. 3 is
considered to be low in the regions away from the wall and very Tow in the vicinity of the walls. As was
mentioned in Sec. 3, the arguments used in constructing this model are valid only at a very high Reynolds
number. Numerical results of McMillan and Ferziger (Ref. 30) also show that Smagorinsky's model is more
appropriate at high Reynolds numbers. Thus, a Tow Reynolds number correction seems to be necessary. Note
that because of the use of a much finer grid in this simulation than that used in Ref. 9, the effective
subgrid-scale turbulence Reynolds number is lower than that in Ref. 9. In addition, because of the quasi-
cyclic nature of turbulent channel flow (bursts, sweeps, etc.) the present calculations seem to indicate
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that a subgrid-scale model that has a better response to the time history of the flow (a dynamic model) than
the simple eddy viscosity model used here may be necessary. This 1s necessary for a proper long-time inte-

gration of the governing equations. Integrating an additional equation for subgrid-scale turbulence energy

is an attractive possibility. In the interim, however, we have found that selective filtering of the excess
small-scale turbulence may be adequate.

9. CONCLUSIONS

In this study, the three-dimensional time-dependent equations of motion have been numerically integrated
for the case of fully-developed turbulent channel flow. The calculations were carried out on the ILLIAC IV
computer with 64 mesh points in each of the spatial directions. Detailed flow patterns were studied by
examining contour plots of typical instantaneous velocity and vorticity fields. In summary:

1. The wall layer consisted of coherent structures of low-speed and high-speed streaks alternating in
the spanwise direction. These structures are absent in the regions away from the wall. In addition, contour
plots of velocities in a typical y-z plane revealed the existence of well-organized flow patterns in the
wall region.

2. Hot spots, small localized regions of very large values of turbulent shear stress, U"V, were fre-
quently observed. Very close to the wall, these hot spots were associated with ©" > 0 and ¥ < 0 (sweep);
away from the wall, they were due to @" < 0 and ¥ > 0 (burst). In the central regions of the channel,
bursts from both halves of the channel were the sources of the hot spots.

3. No evidence of a direct relationship between streaks and streamwise vorticity wy was observed
in the present simulation; very close to the wall, i, was not the result of large-scale revolving fluid
motions but was rather due to the spanwise velocity gradient, (aw/ay). Though strong vortical regions were
observed away from the wall (y* ~ 30), <@,2>1/2 attained its maximum value at the wall.

4. The profiles of the pressure velocity-gradient correlation showed a significant transfer of energy
from the normal to the spanwise component of turbulent kinetic energy in the immediate neighborhood of the
wall (the "splatting" effect). A large portion of the pressure-strain correlations appears to be due to
small to medium scales of turbulent motions.

The work presented here is still in progress and much more remains to be done. In particular, a more
refined model that depicts the dynamic nature of the subgrid-scale motion may become necessary. Also, more
mesh points, especially in the spanwise direction, are required in order to resolve the streaks at their
proper scale. A computation with twice as many grid points as in the present calculation (64 x 64 x 128)
will be carried out in the near future.

It is hoped that this paper has demonstrated some of the capabilities of LES as a research tool for
studying the mechanics and structure of turbulent boundary Tayers. The authors believe that LES will make
important contributions to the study of turbulent flows by supplementing the experimental data.
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Fig. 1. Contours of u" in the x-z plane at y* = 16.
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Fig. 2. Contours of u" din the x-z plane at y/s = 0.73.
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Contour plot of the streamwise vorticity in the y-z plane (0 < y/s§ < 0.5) at x
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DYE INJECTED AT THE WALL WILL BE COLLECTED HERE AND
LIFTED UPWARD

(a) Cross-sectional view of spanwise velocity in
y-z plane.

(b) Streamwise vorticity according to (a).

Fig. 15. Schematic diagram of the flow patterns in
the immediate neighborhood of the wail.
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A TURBULENCE CLOSURE OF THE TRANSPORT EQUATION
FOR THE PROBABILITY DENSITY OF VELOCITY

by

M. M. RIBEIRO
Ph.D, Prof. Aux,
CTAMFUL - DTA, Pav. Maquinas
Instituto Superior Técnico
1096 Lisboa Codex, Portugal

This paper presents a proposal for a first-order closure of the
hierarchy of transport equations for thg probability density of
velocity in a turbulent field., The fluid is assumed to be incom
pressible and Newtonian. The effects of the pressure deviations
on the probability density are modelled based on the assumption
of homogeneous behaviour of the flow field.

The closure is shown to be compatible with a well-known Reynolds
stresses closure, Particular attention is given to the physical
implications of the assumptions embodied in the modelling of the
unknown terms that occur in the exact equation,

1. Introduction

A transport equation for the probability density of velocity may be obtained
for the flow field of an incompressible Newtonian fluid. This is done by Lundgren /1/ and
Monin /2/, who start by eliminating the pressure from the Navier-Stokes equations
through the use of continuity and the Poisson equation for pressure, This is followed by
the use of the definition of a probability density of velocity as an ensemble average of
the instantaneous probablllty density of veloecity, S(u(x,t)~v), which is zero everywhere
except at v= u(x t); u(x t) is the value of velocity at location x and time t, and v is the
coordinate in velocity space.

Further examination of the probability density equation can assist understand
ing of turbulent flow and also lead to improved methods of representing turbulent flows.
Thus the present paper proposes a closure for the one point probability density equation
and demonstrates that it iscompatible and more general than a recently proposed Reynolds
stress closure, The advantages of this new closure are made clear, and the implications
that the return of isotropy, in the absence of mean velocity gradient, stems from aniso-
tropic dissipation, rather than energy exchanges at lower wave numbers, are argued and
justified,
The equation for the transport of probability density of velocity reads:

3 f(v,x,t) 3 f(v,x,t)
= g ==

ot J 9x,

f \
-1 3 I 9o _ 1 1.3 _°2 (V;V;f(lsislgizt) dildll}’ (1)
4 Bvl E;X' Bxl|x'—§| ax!' oax! -
]
-V . Lim L ~ Vi f(v,x,vixlt)dv'
L] 1 - ==
v, |X'-X|*O ij v

In the above equatlon, f(v X, t) represents the probability density of ocurrence
of velocity v at location x and time ty f(v X, v ' X yt) represents the probability density of
simultaneous ocurrence of velocities v and - v at locatlons X and x, respectively,

Eq. (1) represents the conditions implied by continuity and Navier-Stokes equat
ions over the one-point probablllty density of velocity., The first term on the LHS represents
the time dependence of the one-point probability density; for a steady flow (in the sense
that the statistical properties are not time-dependent), it will be zero. The second term
on the LHS is a result of a convective term in the Navier-Stokes equations, where the
velocity appears substituted by the independent variable v. The first term on the RHS
represents the influence of the pressure field over the one-point probability density of
velocity; it involves the two-point density functlon, therefore the pressure links the local
behaviour with a finite region surroundlng the polnt. The second term on the RHS represents
the effect of the viscous field; its 1nfluence is determined by the behaviour of the two-
-point joint probability density, f(v X,ViXit) in the immediate nelghbourhood of the point.

The equation involves two unknowns f(v X, t) and f(v X v X, 't); there is one
more unknown than the number of equatlons. An equatlon for f(v X,V, th) is therefore
necessary, and it can be derived in a similar way as for £(v,x, t) (see Lundgren /1/). How-
ever, this equation will introduce the three-point joint probablllty density of velocity
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through the pressure and viscous terms, and no matter how many transport equations are

written, each equation will introduce a new unknown. The set is, therefore, not c%osed.
Some of the properties of the probability density functions, which will be

used in the subsequent text, are listed below; their derivation can be found in Lundgren

1/,

a) Reduction property

£(v,x,t)dy = 1 (2)

[ fxyixiody! = £,x,0) (3)
v

fim E(v,x,vix3t) = £(v,x,t) X £(v;x;t) 4)

Lim F(v,x,v x,t) = £(v,x,t) x§(v'~v) (5)
The quantity 8(v'-v) is the three-dimensional Dirac delta function defined as:
§(v'-v) = o0 for v' #v

IF(X')Xd(X'-X)dx' = F(v)
Vl

d) Divergence property

For an incompressible fluid, it is:

2 f vy f(v,x,t)dy = o (6)
Ix, v

i e
and

vy £(,x,v3x58)dy =0 (7

|q,
[—

The first three properties are formal, and the last is a result implied by
the continuity equation.

2. A proposal for a closure on the transport equation for the one-point probability
density of velocity

The relative spread and success of one-point closures, together with the
tendency to bring the level of closure to higher orders, suggests that a one-point closure
on the transport equation for the probability density of velocity should be attempted. Such
a closure will contain any closure based on the one-point velocity correlations., Alternat
ively it allows a different type of approach to solving the equations for the time-averag-
ed one-point correlations: the one-point probability density of velocity can be represent-
ed to any order of its moments (svelocity correlations) by its Gram-Charlier approximation
and this allows that an equation in velocity space can be transformed into a number of
transport equations for the coefficients of the approximation.

Eq.(1l) can be rewritten in the form:
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af(ZaE’t) af(z,fyt)
+ v, =
ot . ax.
J
L2 [l b2 P sxvixioay! ax| - (8)
41 v, | X! 3x.Ix'—x| ax' 3x! A
il = il= = m ““n [—
2
- 2im e I vi £(y,x,v;x,t)dy’
v, |x'~x|+o dx!? :
i - = ] v

The analysis of the above equation shows that the two-point probability
function only appears in integral forms of the type:

I = f v! £(v,x,vix;t)dv’ (9)
X n

vixit)dv' (10)

Since a one-point closure is to be used, these two integrals will be assumed
to be locally determined, i.e., their local values are supposed not to be affected by their
own tramsport. This will always be the case for homogeneous flow fields., In the present
modelling, this assumption will be retained: the flow field is assumed to be homogeneous
in a region where the integrals (9) and (10) affect the transport Eq.(8). Homogemneity 1s
intended here to imply a linear behaviour for the mean velocities and a zero gradient for
all the one-point velocity correlations. The existence of a unique relationship between
the characteristic function and the probability density (see, for example, Ribeiro /3/),
implies that the one-point probability density of the fluctuating velocity is, under this
hypothesis, independent on x. For the two-point joint density of fluctuating velocity, it
reduces the spatial dependence to the separation vector r=x'-x. Another immediate implic
ation of homogeneity is that the two-point probability density of the fluctuating velocity
has reflexional symmetry:

E(y*,v'*,r) = £(y*,v'*,~1) (11)

where v*¥Ev - E, and E is the mean velocity vector, defined as ﬁi j \A f(v,x)dv

<

In the remainder of this section, a closure based on a multilinear form for
the unknown quantities is prescntcd. The implications of homogeneity are examined with
respect to the pxessure and viscous terms, followed by an analysis of the restrictions
imposed by the same condition on the applicability of the model in 2,1. Imn 2.2 a multi-
linear relationship of known local quantities, linked with the unknown quantities, is
formulated; this relationship is then made to satisfy the boundary conditions, continuity
and homogeneity. The resulting expression is input to the pressure and viscous terms,
yelding their final modelled forms. This is followed by a physical interpretation of the
results which includes the version of the model for the Reynolds stress transport equations.

2.1 Implications and validity of the homogeneity assumption

In order to examine the implications of the homogeneity over the pressure and
viscous contributions to the transport of the probability density of velocity, it is
convenient to express these contributions (on the RHS of Eq.(8)) in terms of the joint
probability demsity of fluctuating velocity at locations x and x', £(v¥*,v'%),

The following identities will be used: - -

, . 3 I = -
1! [ L 1% 1 1% 1 % L) L)
i) v ‘I"vmvn f(v,x,v,x')dy - V'*(Vm U (v *HU) £(yr,v'*)dy
-_— 1 -
Lo AEG@R
£ 007! —— + T J vk fvk,v'*¥)dv'* + (12)
e ™ ovrym D - -
1 alc
. ﬁé ) I VA* £(vk,v'*)dv'* + 9 v&*vé* £ (v, v ' *)dy'*
dvi V'k dvy V'
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3 9 f(y*) .
ii) —2— f vl £(v,x,vix')dv' = U{ —_— f vi* f(y*,v'*)dv'* (13)
dv, vr T T T~ dv# dvk !
11— 1 1 -
IE(y*) B E(W)
i) = (14)
it dv# dv.
1 1

In addition, the contribution by the pressure forces will be split into the contribution
by the mean and fluctuating pressure. It may be noticed that the mean pressure, P, is
related to the spatial distribution of mean velocity and Reynolds stresses through the
following equation (e.g., Townsend /8/, p.43%44):

1 1 83; 83& Bzumué
iv) F(i) =N j —_— | — — + —— |dx' - (15)

4w X' |x"-x| Ox| dx;  dx; dxp

The preceeding four relationships are next used to analyse the implications of homogeneity
on the generality of the unknown terms appearing in Eq.(8).

2,1.1 The viscous contribution

The contribution of the viscous forces is represented by the second term on

the RHS of Eq.(8). This term will be referred to as Tv‘ The use of relations (13) and (lé&)
yields:

: 2
T = -V _2_ 2im 9 f V&* f(z*’z'*’E)dzl*1 -
v dv* | r~o dr? V'x ]
n - m -
(16)
2y *
_v 9%T_ 9 £(v*)

9x? v
m n

The assumption of homogeneity does not restrict the generality of this term, since it only
depends on the immediate neighbourhood of x. Obviously, the quantity

azﬁg 3 £(v*)

-V
9x? dv*
m n

appearing on the RHS of relationship (16), is zero in a homogeneous flow. It represents
the effect of mean viscous diffusion; its contribution to the transport of probability
density is negligible, except in cases of severe curvature of mean velocity profiles.
Since the mean viscous diffusion does not introduce any further unknows, and therefore it
does not need to be modelled, this term will be retained in the final modelled form of the
transport equation,

2.1.2 The pressure contribution

The contribution of the pressure forces is represented by the first term on
the RHS of Eq.(8). This term will be referred to as T_. Using relations (12) and (14), T
may be rewritten as: P P

EXVAN YT
ro- L2 ] {_3_ 1 ] BT R p(yax'
% 1 [ 1 1 e -
b 3VK X 8xK|§ x| 8xn Ix
v
+ 2 ,f 2 _1 e [f vk f(z*,z'*)dz'*] dx' + r7)
X' L ax, |x'-x| ax'  9x'l v'¥ n
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Relation (15) may be used in order to separate the contributions by the mean
and fluctuating pressures:

3T, 8T} RSTRRT
Tp A SN j e 1 || m_n,_ __mn f(v*)dx' +
1 | - T 1
4m dv¥ { X'19x Jx'-x| an me ox} me
3u!
+ 2 I _@___1— o _ﬁ_ I V'['l* f(!*’!'*)dl'* d£'~ + (18)
X' BxK |x"-x| 9x' dx' \v'#
2
+ I {;2— 1 g J (vﬁ*v;*-u'u ) £(v¥,v'*)dv *dx’
X'[8x, [x'-x| J 8x; dx; V'*

i) The first term on the RHS of this equation will be referred to as Tpl and is

exactly:
MU SO U S S S W (19)
pl P p

BVE BxK BVK BxK

Again, for homogeneous flow, there is no contribution to the mean pressure
by the spatial distribution of Reynolds stresses., However, since the mean pressure does
not introduce further unknowns, the quantity (19) will be retained in the final modelled
form of the transport equation. In any case the contribution to the mean pressure of the
second derivatives of the Reynolds stresses is much smaller than that of the derivatives
of the mean velocity distribution.

ii) The last term on the RHS, that is referred to as T 3» can be shown, under homo-
geneity, to be identically zero: homogeneity allows thg dependence on X or x to be
expressed in terms of £"£ X3 this yields:

r 2
T 5= 1 8 j K 8" j (Vé*vé*’E;E:) £(v¥,v'*)dv'* | dr (20)
P 4 avé R r? Brm or X'*

n

Due to the reflexional property of f(v*,v'*), the integral over V'#* space is
symmetric around r, and so is its second derlvatlve, 3%/or owfn’ Then the 1ntegrand of Tp3

becomes the product of a symmetrlc and an antisymmetric functlon (r /ra), which is anti-
symmetric; the integral over R is therefore zero.
It can be objected that the quantity

32

(u'u’),
dr_ 9r mon
m

n

which gives no contribution in homogeneous flow, is kept inside the integrand in Eq.(20).
This quantity is left there in order to emphasize that no contribution of T 3 is associated
to the deviation of the value vp*v)!* around its mean, rather than around zero.

iii) There remains the second term, sz, that under homogeneity becomes:

T
T, = L m 3 kK 3 j v'* f(v¥,v'*)dv'* | dr (21)
E 2w dx, vk (R x® or Ly T T 7 7 -

The unknown quantity is the derivative of the integral over V'®* of a function
that involves the two-point distribution. However, by virtue of the separation and coinci-
dence properties of the probability density, the integral over V'%* satisfy the following
conditions: -

(22)

1]
o

j' vé* f(l*’l'*)di'* = v: f(v*) for r
AL

(23)

1
8

It

EI f(v*) =0 for r
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In physical terms, this quantity tends to zero with the inverse of the
distance between the two points x and 5', at a rate that is dependent on the size of the
macro-length scale associated with the two-point velocity correlations. As in Eq.(21) only
its spatial derivative is used, and as it is expected a monotonic behaviour for the
integral over V'#* on R, the integrand of Eq.(2l) must tend to zero at a faster rate than
the RHS of Eq. (23) Therefore, the validity of homogeneity assumption is dependent on the
size of the region where the spatial rate of variation of the two-point velocity correlat
ions affects the value of Eq.(21l). In flow regions remote from solid boundaries it is
expected that the assumption is not too restrictive.

2.2 Proposal for the closure model

The analysis of the unknown viscous and pressure contributions (Eq. (16) and
(21)) to the transport equation for the probability density shows the need to relate the
quantity Qn’ defined as:

Q =j vok E(uR, v R)dy R, (24)
V*

with the known local properties of the flow field. Q, is obviously a function of r =x'-x;
and, as Eq. (22) and (23) indicate, it is also expected to depend on v* and f(v*). Another
quantity that is expected to influence the value of Q, is the gradient of f(v*)in velocity
space: a one-point distribution with a very narrow spread (high v-gradient) 1s associated
with a high rate of spatial variation of the quantity Q Based on these dependencies, a
tensorial expression satisfying the dimensionality of Qn can be written:

3 £(v*)
= * * kyh ——
Qn oy vy f(v*) + Bnpqr qur - (25)
p
In this equation, o and B, qr are only functions of the separation vector
r; furthermore, the 1nterchangeaglllty of q and r implies that Bnpqr = Bnprq This yields
the following general form for the two tensors:
A
o = Ly r, + A S (26)
nf p2 B 2 2 nf
and:
A A A
B = —3 rrrr_+—2rr3$6 + —2r ¢ §
npqr 4 BPAQT r2 B PaAr r2 94 ¥ WP
A6 A,
+ — (r_r_§ + rr. 6 ) + (r r § + rr. 6 )+ 27)
r? P 4q nr P r nq rz n g pr n r pq
+ A © + 8 8§ ) + A8 S ,
nr pq nq pr np qr
where the coefficients A; are even functions of r _|r| Relations (25), (26) and (27)

define the general form of the model, and, so far have not been subjected to the physical
constraints, This is done next:

i) Boundary conditions. These are expressed through the coincidence and separation
properties of Qn'

A=1; A.=20 for r=0 and i#2 (28)

A. =0 for r+x (29)

Furthermore, as the Als are even functions of r, all their odd derivatives at the origin
will be zero; in particular:

=0 for r=20 (30)

At infinity, the separation property also ensures that all the derivatives are zero:
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=90 for r+® and for any integer n (31)

ii) Continuity. This condition can be applied to Qy under the form of Eq. (7). After
differentiation of Eq.(25) with respect to r,, followed by the condition that the
result is independent of the values of r,v¥*,f(v¥) or Bf(v*)/avg , the following set
of relations between the Ais emerges: - -

4 + = -2 ——Al- 4 (A +ag+2a -2 (-A4+A-2A¢)
ar (Mathe) = T ar (Thaths ) = 7 3T hs 6
(32)
d - 1 d 2
ar (A7+A8) = - (A5+A6+2A7) H ar (AH+A9) = - = (A,""AG)

iii) Homogeneity. This condition is introduced through its implication over the two-
-point velocity correlation tensor, Rij; under this assumption:

Rij = uiuj(z) = ui(—z)uj = ui(i)uj = Rji
Using the identity:
ny =l e e
to express the above results in terms of Q and substituing Q by its modelled form,

the following relation between the Ais emerges:

A1= 2(A3+AH+A5+5A7) (33)

Eqs.(28) to (33) represent the constraints to be satisfied by the coefficients
A; in order to obey coincidence, separation, continuity and homogeneity. These equations
will be used in the algebraic manipulation as a means to obtain the final reduced forms of
the pressure and viscous terms.

2.3 The pressure term

The modelled form of the pressure term can now be obtained; when the integral
over V'# in Eq. (21) is substituted by its approximation, represented by Eq. (25), the
pressure influence becomes:

oT T 00 o £(v*) r ©°8R 1 )
s S e S I [f(l*)vz [ D nb gy o 2T gagn [ Dk ZTmRar (34)
P 2T 9x_ Ov* R r® 3¢ av* 1 r R 8 9r -
n K - m P - m
Substitution of the tensors o and Bn r by their expressions (26) and (27)

followed by the<use of the conditions implied by sepdration, coincidence, continuity and
homogeneity yields:

)i 92 £(v*) A
R L § B L L
an av* Jv* R T
32 £(v*) A
+ vivk = ﬁtj_aer,%*
av* av* | 35 R T
3% £(v*) 8 A, ]
+ viy% ——j—-dr + (35
K“av;;av*L”Rr )
32 £(vr) [ A
s LRl T e
m av¥ 9vx L R r

w
w

o £(v*) A 9 f(v*) A
A 292 2z
+v$_——{?—4.1'£?3dr+2):]+ v;';__.___. -_3£1£_r_3dr_2

9 v¥
m
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Eq.(35) represents the modelled form of the pressure term, The equation shows
only one parameter, that is associated with a macro-length scale that characterizes the
size of the spatial region where the velocities are correlated; the parameter is, there-
fore, expected to be associated with the low wave-number region of the spectrum of energy
of the velocity fluctuations. For simplicity of notation, the parameter will be represent
ed henceforward by CZ:

~ 1 j 3 ( 6)
= — 3
C2 = 735 dr 5

It is appropriate, now, to derive the equivalent form of the result expressed
through Eq.(35) for the transport equation of Reynolds stress tensor; this can be obtained
by multiplying Eq.(35) by va? and integrating over V:

] 3T, aﬁj} !
kg = A - - - }+
; vivj sz dv. uu ax + e 2402 =
v i
__a3m afk » a'ITK 2
+ 1,_1:i-uK + ujuK —_— UKU,Q _— Gij 6402 + 5 + (37)
&% a3 9x /
j i L
Bﬁj Bﬁl 9 BﬁK 4
+{u,u —= + u.u - 5 uu, — §, 8C, + —=—
17k Ny i P 3 k8 3 ij 2 5
K K L

This equation contracts to zero and therefore its effect is purely redistri-
butive of energy between the different components of the Reynolds stress tensor. It has
the same form as proposed by Launder, Reece and Rodi /4/ and Naot, Shavit and Wolfshtein
/5/. This should come as no surprise, bearing in mind that the basic assumptions in the
modelling of this term are common to all these works, viz., the homogeneity of the flow
field and a multilinear form for the model. '

A difference between the present result and that of Launder, Reece and Rodi
/4/ is that the part of the Reynolds stress redistribution attributed by Rotta /6/, solely
to the turbulent interactions via the pressure term does not occur in the present situation.
Since it is a widely held view that the return to isotropy which occurs in homogeneous
flows in the absence of mean velocity gradients is due to turbulent interactions at wave
numbers lower than those at which significant viscous dissipation occurs, it seems worth-
while to proceed this subject a little further, The convenient quantity to look at is the
density of contributions (in wave number space) to the Reynolds stress tensor, known as
energy tensor (cf. Batchelor /7/, p.26), and represented by ¢;.:(k); in an homogeneous flow,
in the absence of mean velocity gradients, ¢ij satisfies the following relationship
(Batchelor /7/, p.86):

3d,. (k)

ij 'L

” = Fij(5)+ Hij(ﬁ)—ZvaKméij(E) . (38)

Fi' and Hij represent the contributions to ¢;: by inertia and pressure forces;
v is the kinemilic viscdsity, K is the wave number vector and t is time. It can be shown
(Batchelor /7/, p.90) that Fij and Hij must satisfy the following relationship:

(39)

In the inertial subrange, Kk is finite and I',: is zero, therefore II;; is zero.
Since it is difficult to imagine a physIcal mechanism invdlving only eddy interactions
which is exclusive of the lower end of the wave number space, it is plausible to expect
that there is no significant redistribution driven solely by eddy interactions. The weak
tendency towards isotropy exhibited in the measurements of Comte-Bellot and Corrsin quot-
ed by Townsend (/8/, p.67+68),lmay be explained by a non-isotropic dissipation; in section
2.4, this subject will be discussed.

2.4 The viscous term

When the unknown part of the viscous contribution (Eq.(16) is expressed in
terms of the model, Eq.(25), the following result emerges:

3% o 3 £(v*) 3% 8
vi £(y*) Lim — R0 ¢ ykyk T gim —— 0par (40)
vk |z]+o 23r? ar vk lz|~+o or?
n = J P - 3




After calculation of the derivatives of the two'tensors, %ny and Bnpqr’ Eq.
(40) can be reduced through the use of the conditions implied by separation, coincidence,
continuity and homogeneity to yield:
T = 10v (A" + A" + 5A") . (v* f(v*» +
v2 4 3 7 K =
av¥*
K
; 8 £(v*)
+V (5A" - AV + 3A") — (v*v* —_— >+ (41)
* s &7 dux 3 ov*
K K
W, 3 £(v*)
+v (3A" + A" + 10A") viv# )
s d ? Bv*\ 3« ov¥
K ]
where, for simplicity of notation:
a%a,
AY = %im (42)
B r+o dr?

Eq.(41) shows the occurence of three parameters, expressed as linear combinat
ions of the second derivatives of the Als at the origim.

The physical interpretation of the result expressed in Eq.(41) is considered
next, by recurrence to its form in the transport equation for the Reynolds stress tensor.
When that equation is multiplied by v¥v¥ and integrated over the velocity space, it yields
the following contribution, due to the Yiscous forces, in the transport equation for the
Reynolds stress tensor:

— 1 —
*y¥ - 1 n - ——
£ Vivj TVZ dv \)(GA5 + ZZAG) (uiuj 3 uKuK5ij) +
! (43)
" n
+ \>(30Au + AOAG) 5 uKuKGij

The first term on the RHS of Eq.(43) contracts to zero: therefore the term
redistributes energy between the components of the Reynolds stress tensor without altering
the total level of energy. It will be shown next that the second term on the RHS of Eq.(43)
represents the dissipation of the stress if the field were isotropic. This will be achiev-
ed through the use of some standard results of the theory of isotropic turbulence: In this
theory, it is a well known result (e.g. Panchev, /9/) that there is a relationship between
the viscous dissipation of turbulent kinetic energy, €, and the Taylor microscale, A:

u u (44)

The microscale X is defined through the behaviour of the two-point velocity
correlation tensor near the origin, as:

1l — 1 r
R.. —_ .r. 1-—18..
1] 3 uKuK[ZAZ rlrj * < A2> 13] ()

On the other hand, Rij can be expressed in terms of the proposed model, i.e.:

[ ' 9 £(v*)
.. = Q. kuk * * . kykyd e *
le aJl . vivy f(v*)dv* + Slpqr I vJqur -~ dv (46)
v
s i P
After integration and upon substitution of the Reynolds stress by its isotropic
value (uiuj = /s uKuK5ij), Eq.(46) becomes:
Ro. =L o w(c4n - a-3ay i 4 (A - A - 24 - 10A - 5A )6 (47)
ij 3 kK 6 3 i £2 e e g g 9771

Since the region of interest is the immediate neighbourhood of the origin,the
above equation can be rewritten with the help of a Taylor expansion around r =0:
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B
- 1 __3_ "o " 2 " "
Ry: = - S| (-5 Al - 280 +[1 +or (3Aq+4A6):|6ijJ (48)

ij KoK
which, when identified with Eq.(45) yields:

JAM + 4AV = - L (49)
L 6 >\2

and, through Eq. (44)

" w - _ _E 1
3AY 4 4AY = - S (50)
u_u
KK
Substituting this result in Eq.(43),
[ vsvs 1 av = v(ea"+224") (576, -1 TE 6..) - X e, . (51)
v i3] v2 = 5 6 i] 3 KK 1j 3 ij

Before commenting upon the physical meaning of Eq.(51), an analysis of the
parametric coefficient affecting its redistributive term is necessary. The second deriva-
tives of the Als at the origin are assoclated with the small scales of the turbulent
motion, as opposed to their integrals over the R space, that are linked with macroscales;
therefore, the AE'S are expected to be the same order of magnitude:

o{v (6a} + 22470) ) o {v (304} + AOA’G’)}

(52)
= o{-¢e/k}
(k represents the turbulent kinetic energy, defined as k =1/ u u, i.e.:
V(6A" + 224") = - C. (53)
5 6 1 k
and C; of order 1. Therefore, Eq.(51) can now be rewritten as:
€ — 2 2
fvh = - == - L - L
f vivE T, dv ;4 (uju; 5 kS5 4) 3 €854 (54)

v

This equation shows two different types of viscous contributions:

i) The first part on the RHS is associated with the anisotropy of the turbulent field;
its effect is to redistribute energy between the components of the Reynolds stress
tengor. It is of the same forwmal type and magnitude as the contribution attributed by
Rotta, /6/ to the pressure scrambling due solely to turbulent interactions. In section
2.1, it was concluded that such a term was not associated with pressure if the
flow field were homogeneous. However, a term of this type is necessary in order to
account for the measured levels of the Reynolds stresses in homogeneous flow. It seems,
therefore, that this contribution is associated with the viscous term; any anisotropy
present at the lower wave-number end of the inertial subrange would pass unaltered
through this region as the size of the scales would be too small to be noticed by the
mean flow field and too large to notice the effects of viscosity. At the upper end of
the inertial subrange, the long but thin "filaments" of fluid possess a very high
vorticity that will be dissipated by viscous shear.

ii) The other term on the RHS of Eq.(54) represents the contribution to the dissipat-
ion of the stress that would occur in an isotropic flow field with the same turbulent
intensity.

The above comments suggest that Eq.(41) may be revritten in terms of the

dissipation of turbulent kinetic energy and of two non-dimensional coefficients, C; and Cg;
Ci1 is defined by Eq.(53) and Cy is defined by:

- - k "o " "
Cy = -V (30A] - 40A7 + 1504Y) (55)

With these definitions, Eq.(41) becomes:

1 9 A
vE E(uE) 4 o (1=Cp) —— vEvE —— |+ (56)

% NI %
SVK BV%

= - &
Ty = ~ 3|1+ Cy)

dvk
VK
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C C 3 £(v*)
w1 ¢ 3 8 | gkyr = T
2 5 vk K av#
K 1

The constant C3 makes its appearance for the first time. It can be seen that
this constant does not appear in the transport equations for the velocity correlation
tensors of order lower than the third; therefore it does not affect closures at

Reynolds stress level.

the

3. Final form of the set of equations. Determination of the constants

the unknown terms are substituted by their modelled forms

equation emerges:

in Eq.(8),
the following

When,
(Eq. (35) and (56)),

o
3 f£(v) 3 £(v) 1 3% 3 £(v) 3 v, 9 £(v)
e AAE e B B e -V +
at T ax, P 9x, dv ax?  av,
J J 1 J 1
2T, | 82 £ (v) 3% £(v) 3
+ — vzvé (-2402 = ?r) + viyE (64CZ+ TT) +
3x, ] dv, dv, ov,
] ] K ]
3% £(v) 3% £(v) 5
+ viy¥ ( 8C ) 4+ vivE (-24C, - =) +
K3 ey oy 2 1 5y o 25
(57)
3 E(v) 3 E(W) )
+ v¥* (224C, + 2 ) + v¥ (-56C, - 2 )% -
i 2 2
v v,
i
9 £(v)
-1 =€ 9 * + L - Kyk
TT{(1+CB) [VK f(l)J + 5 (1 Cl) [vjvj +
v 3 v
K
¢, ¢ 2Ew) | |
+ <—1 + —3> . ,:v.%‘vé _ ] j’
2 5
avK avj
The model introduced three parameters, assumed to be constants, and the

dissipation of turbulent kinetic energy; the occurence of the latter implies that a closed
set of equations can only be obtained after a constitutive relationship or a modelled
transport equation is envolved for the dissipation of turbulent kinetic energy. This has
been done by Hanjalic and Launder /10/, who developed and used the following transport
equation for €:

: 37, 2
T. e _ c 3 . Tern %€ | _ c T I R A (58)
I oag € 94 3 ik ax €1 K 5y k E2 k
j a 2 K

The terms on the RHS are, respectively, modelled forms of the diffusion,
generation and destruction of the dissipation of turbulent kinetic energy. Launder, Reece
and Rodi /4/, used the following values for the constants appearing in Eq.(58):

c. = 1,45; c, = 1.90

€ €1 2

Analyses of Eq.(58) may be found in Pope /11/ and Ribeiro /3/.

The use of Eq.(58) in conjunction with Eq.(57) yields a closed set of equat-
ions for the transport of probability demsity distribution of velocity. There remains the
problem of assigning values to the constants, C,, C,, and C3 appearing in Eq.(57); the
levels of the Reynolds stress tensor occurring in homogeneous turbulence (see Champagne,

Harris and Corrsin /12), yield a value of 1.5 for
of Cq requires the knowledge of the levels of the
since in homogeneous flow, the third-order tensor

C1 and -.0045 for Cy; the determination
fourth-order velocity correlation tensor,
is identically zero; however, the formal

similarity between the terms in C; and Cq4 suggests that Cq might take a value around 1.5.
This concludes the objective of finding a phenomenological closure of the

transport equation for the one-point probability density distributions. This was achieved

by relating the behaviour of one quantity, involving the two-point probability density

of velocity, to local properties of the flow field, This quantity affected the tramsport
equation for the probability density distribution both through its rate of change in the
neighbourhood of the point and through an integral behaviour; therefore, the model had to
reflect these two types of effect,each of them demanding a separate physical interpretation.
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4, Final remarks

The proposed closure for the equation that governs the transport of the one
point probability density distribution of velocity has been shown to be compatible with
the Reynolds stress closure of Launder, Reece and Rodi /4/, The advantages of the proposal
may be summarized: it allows any model based on the one-point velocity correlations to be
obtained without further assumption thus guaranteeing the compability of the modelling
of the different quantities., It must be emphasized that the model involved one unknown
quantity, and that the basic assumption, homogeneity, has enough generality in flows remote
from walls, The drawbacks of the model lie mainly in the increase of the number of
independent variables by three, However, some economy measures can be used to avoid this
disadvantage. Apart from the obvious possibility of solving for some of the lower order
moments of the equation, another promising possibility is to use a series representation
of the probability density of velocity: whemever the one-point probability density of
velocity is unimodal, an excellent approximation can be obtained through its Gram-Charlier
series (see Lumley /13/); the terms of this series are orthonormal and one of its properties
is that at any order, the number of moments that are excatly satisfied is known., The
influence of each term can be quantified as today's experimental techniques allow the
one-point probability density of velocity to be determined with a reasonable level of
accuracy (see Ribeiro and Whitelaw /14/), thus allowing the separation of the terms that
best represent the probability density of velocity. When this series development is used,
the one equation in velocity space reverts to a discrete number of equations for the moments
of the series; thus, it is an alternative of the same formal type to the solution of the
transport equation for its moments.
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SUMMARY

The paper demonstrates, by comparison between calculations and measurements, that turbulent flows
around a range of geometric configurations of relevance to aircraft and missile design can be represented
by time-averaged boundary-layer equatfons with an algebraic eddy-viscosity hypothesis. The use of higher-
order models is difficult to justify and the existence of possible "coherent" structures does not influence
this conclusion.

1. INTRODUCTION

A major purpose of this paper is to consider and evaluate the merits of turbulence models for the cal-
culation of the flow around geometric configurations of relevance to airplane and missile design. To
achieve this, calculated results obtained with three turbulence models are compared to each other and to the
boundary-layer measurements selected for use at the 1968 Stanford Conference (ref. 1); and calculations
presented, and where possible compared with measurements, for several three-dimensional flows.

As can be seen from references 2 and 3, for example, considerable efforts have been devoted to the
investigation of turbulence models and coherent structures in recent years. In the former case, the alge-
braic eddy-viscosity hypotheses have been replaced, from a research standpoint, by higher-order models
ranging from eddy-viscosity models based on turbulence energy and dissipation rate obtained from differential
equations, to second-order closures involving more than one length scale. In the latter, the large eddies
associated with some wake flows and "bursts" observed in near-wall flows by flow visualization and condi-
tional sampling of hot-wire signals have emphasized the need for experimental verification of calculated
results for turbulent flows obtained from the solution of time-averaged equations. Of course, in many of
the flows considered previously, and also in references 2 and 3, calculations based on time-averaged equa-
tions and different turbulence models have been compared with measurements and some have been shown to be
within the measurement precision. It is useful, however, to determine the need for higher-order models and
the need to represent possible coherent structures for the calculation of the boundary Tayers around aircraft-
related components.

The following section presents a brief introduction to the reduced forms of the Navier-Stokes equations
considered in Sections 3 and 4 and of the turbulence models used. Section 3 presents calculations obtained
with time-averaged, two-dimensional, boundary-layer equations and three turbulence models corresponding to
the algebraic eddy-viscosity hypothesis of Cebeci and Smith (ref. 4), the Reynolds stress method of Bradshaw
Ferriss and Atwell (ref. 5) and the two-equation, eddy-viscosity approach of Jones and Launder (ref. 6).
Calculations have been performed for the data of reference 1 and the sample presented corresponds to the
stronger pressure-gradient cases where the algebraic assumption might be expected to be less successful.
Calculations, with the model of reference 4, are then compared with measurements of a separating boundary
1a¥er and gf a near wake in order to allow better assessment of the outer-region component of the model of
reference 4.

Three-dimensional boundary-layer equations have been solved and the results are presented in Section 4.
The infinite swept-wing of reference 7 is considered first and allows comparison between the models of ref-
erences 4 and 5 for a comparatively simple flow. Calculations for a second swept wing are then presented and
the more complex rectangular duct flow of Vermeulen (ref. 8) considered and used to compare the capabilities
of the models of references 4 and 6. As in the case of the two-dimensional flows, the calculations with each
mode1 lead to similar results. The calculations are then extended to three-dimensional wing flows where it
is shown that the Cebeci-Smith model provides results adequate for many design purposes. The 1imiting factor
in the calculation of the flow around wings, and also around bodies of revolution, is not necessarily the
turbulence model and the discussion of Section 4 and conclusions of Section 5 emphasize this important fact.

In genera1, it may be concluded from the comparisons of Sections 3 .and 4 that, at least for the flow
around aircraft components, it is difficult to justify the use of turbulence models more complicated than
the algebraic eddy-viscosity formulation of reference 4, The results also suggest that the existence of
“coherent structures" is of no significance. In contrast, numerical uncertainties associated with the
viscid-inviscid interaction and the determination of boundary conditions and transition can introduce
significant uncertainties and, together with numerical requirements, make it even more difficult to justify
the use of higher-order models,
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